

Padova-Trento group report

Matteo Leonardi on behalf of the Padova-Trento group

Our to do list was...

- In cavity second harmonic production
- Phase Locked Loop
- Infrared mode-cleaner
- Low loss Faraday rotator

Summary

- Bench layout @LNL
- Second Harmonic Generator (SHG)
 - Mechanics
 - Thermal control
 - Quasi Phase Matching
 - Digital locking
- Phase Locked Loop (PLL)
- Mode Cleaner (MC)
- Faraday Rotator (FR)

Bench layout

Requirements:

- ➤ 50-100mW of green (TDR will specify the number)
- ► low IR contamination
- ➢ long term continuous operation

SHG mechanics

Key features: <u>compact</u> and <u>robust</u>

SHG thermal control (I)

Conductive paste could be a problem

Completely DRY assembly

Peltier cell

MACOR

PPKTP 1x1.5x9.3 mm

OFHC copper

$\begin{array}{c} \hline \textbf{Advanced} \\ \textbf{Virgo} \\ \hline \textbf{SHG thermal control (II)} \\ \hline \textbf{MC} \\ \textbf{PT100} \\ \hline \textbf{MC} \\ \textbf{Hz-24bit} \\ \hline \textbf{PID} \\ \textbf{Hz-16bit} \\ \hline \textbf{MC} \\ \textbf{Hz-16bit} \\ \hline \textbf{MC} \\ \textbf{MU} \\ \textbf{MU$

~60h acquisition (215950 points)

SHG double pass QPM

We were expecting a $sinc^2$ but...

SHG DP conversion

For each P_{IR} the maximum of the QPM curve is plotted.

SHG cavity

Fitted finesse $\mathcal{F} = 136 \pm 2$ Expected one was $\mathcal{F} = 142$ (computed with FINESSE)

Transmitted light on resonance 0,9 0,8 0,7 **FSR** 0,6 V_{transm} 0,5 mode matching $\gtrsim 30\%$ 0,4 0,3 0,2

17/09/2014

0,1

0.0

2000

2250

2500

2750

time [sec]

3000

3250

Advanced SHG cavity locking loop (I)

First step \rightarrow ANALOG locking loop

Done

Second step \rightarrow DIGITAL locking loop

Done

Third step \rightarrow DIGITAL locking loop with auto-relock Done (see next slide) Advanced SHG cavity locking loop (II)

SHG cavity QPM (I)

QPM curve with the SHG cavity.

Further investigation is required...

SHG cavity QPM (II)

Comparison between the cavity and the double pass conversion (preliminary)

SHG: RF generator

PLL

Requirement: phase noise < 10mrad

 $\phi^{2}_{noise} = \frac{f_{FWHM}(master) + f_{FWHM}(slave)}{2 * unitary gain BW}$ \rightarrow unitary gain BW ~1MHz

Optical part completed.

IR mode cleaner

Polarization	Finesse	TEM ₀₀ transmittivity
S	4187	0,933
р	259	0,996

- the invar bar is being machined
- the PZT and the digital locking loop are ready
- the mirrors will arrive soon (~October)

Faraday rotator (I)

We have a code to calculate numerically the magnetic field of realistic magnets geometries.

Q.L. Peng, S.M. McMurry, J.M.D. - Coey Journal of Magnetism and Magnetic Materials 268 (2004) 165–169

Faraday rotator (II)

The code was applied to the AdV INJ Faraday.

1.015

1.01

 $B_{z}(z, \rho)$ off axis

 $B_z(z, 0)$ on axis

Squeezing F2F - Cascina

10

5

Near Future

SHG:

- 1. mode matching needs to be improved
- 2. green beam needs to be characterized (polarization, collimation, IR contamination, ...)
- 3. temperature and PDH digital loops can be further optimized

<u> PLL:</u>

• Real Time OS will be tested

IR MC:

needs to be constructed and tested

<u>FR:</u>

 our TGG will be tested by us inside faraday rotator similar to the AdV INJ one (no manpower theft)

Thank you