# TDR Ch4 (updates 2)

| avity                                 | 1                 |
|---------------------------------------|-------------------|
| PO optical design                     | 1                 |
| .1 Prototype cavity                   | 2                 |
| echanical Design                      | 2                 |
| ignment and cavity length control     | 3                 |
| timated threshold power               | 3                 |
| aximum achievable level of squeezing  | 4                 |
| 5.1 Ideal case                        |                   |
| 5.2 Estimation of intra-cavity losses | 5                 |
| 5.3 Realistic case                    | 5                 |
| mperature Control                     | 5                 |
| e i t a                               | PO optical design |

# 1.1 Already discussed

- 1.2 Already discussed
- 1.3 To be detailed (next week)
- 1.4 Problem of the threshold power
- **1.5 Already discussed** but I could add other considerations (next week)
- 1.6 Completed with the final configuration and results.

# 1.4 Estimated threshold power

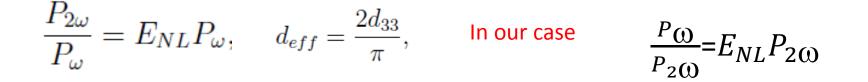
As Yurke first showed in 1984 [REFERENCE] to make possible the production of squeezed light by a parametric down conversion process, it needs to work in *subthreshold* regime. So, it is important to calculate the threshold power for our OPO.

The value of the threshold depends on cavity parameters and the non-linear conversion efficiency of the crystal [REFERENCE WuXiaoKimble]:

$$P_{th} = \frac{\pi^2}{4F^2 B E_{NL}} \qquad \qquad B = \frac{T_1}{(1 - \sqrt{R_1 R_2})}. \tag{1.1}$$

where F is the cavity finesse at 1064 nm, B is the *buildup* parameter <sup>1</sup> (the ratio between the oneway circulating power into the cavity and the incident pump power, in the absence of coupling) and  $E_{NL}$  is the *nonlinear conversion efficiency*<sup>2</sup>. In case of perfect mismatch ( $\Delta k = 0$ ), for our cavity  $E_{NL} = 0.0115W^{-1}$ , B = 2.6 and considering that the finesse of out cavity is about F = 75 we can found that the predicted threshold power is 14.7 mW.




<sup>2</sup>The nonlinear conversion efficiency is defined as

$$E_{NL} = \frac{2\omega d_{eff}^2 l^2}{\pi \epsilon_0 c^3 w_0^2 n^3} sinc^2 \left(\frac{\Delta k l}{2}\right)$$

where  $l \ d_{eff}$  is the effective nonlinear coefficient ( $d_{eff} = 10.3 \text{ pm/V}$  for KTP), l the crystal length and  $\Delta k$  the momentum mismatch between the pump beam and the beam at the fundamental frequency.

For SHG

$$P_{2\omega} = P_{\omega}^2 \frac{2\omega^2 d_{NL}^2 l^2}{\pi\epsilon_0 c^3 w^2 n^3} sinc^2 \left(\frac{\Delta kl}{2}\right)$$



this experiment. The poling reduces the effective nonlinear coefficient of the crystal by a factor

$$d_{eff} = \frac{2d_{33}}{\pi},\tag{3.6}$$

where the  $d_{33}$  coefficient is the scalar component of the nonlinear coefficient used in this experiment. For KTP,  $d_{33} = 16.2 \text{ pm/V}$  which makes the effective coefficient  $d_{eff} = 10.3 \text{ pm/V}$  [Sutherland, 2003]. I used this value

### Measurement of nonlinear optical coefficients by phase-matched harmonic generation

Robert C. Eckardt and Robert L. Byer

| KDP                             | $d_{36} = 0.38$                                                 |             |
|---------------------------------|-----------------------------------------------------------------|-------------|
| KD*P                            | $d_{36} = 0.37$                                                 |             |
| LiIO <sub>3</sub>               | $d_{31} = -4.1$                                                 |             |
| 5%MgO:LiNbO <sub>3</sub>        | $d_{31} = -4.7$                                                 |             |
| BaB <sub>2</sub> O <sub>4</sub> | $d_{\rm eff} = 1.94$<br>$ d_{22}  = 2.2^{(b)}$                  |             |
| KTP                             | $d_{eff} = 3.2$ (<br>$ d_{15}  = 1.9^{(c)}$<br>$ d_{24}  = 3.5$ | - NO POLING |

### I must investigate about the correct parameters to use

## 1.6 Temperature Control

To reach the phase matching condition, as in the case of second harmonic generation, the crystal temperature must be kept constant, at a value of about  $35^{\circ}$  C. Also in this case, the desidered temperature is mantained by an active control loop, using a sensor and an actuator. In the control scheme used for the OPO, two NTC thermistors <sup>3</sup> and a peltier element <sup>4</sup> (dreven by an external DC power supply) are used.

One of the two thermistors (In-Loop) is inserted in an analog circuit (Wheatstone bridge) whose output voltage (related to the NTC resistence, and then to the measured temperature) is used for a PID control loop, running under LabView. The other thermistor (Out-of-Loop) is used to measure the temperature indipendently of the control loop. This last measurement it was

performed using a high precision digital multimeter<sup>5</sup>. This control loop make possible to reach a temperature stability of less than a mK for the Out-of-Loop measurement and of about 2 mK with the In-Loop thermistor.

<sup>&</sup>lt;sup>3</sup>Conrad Elektronik, Type: NTC-SEMI833, Part number: 188506 <sup>4</sup>RS 197-0332

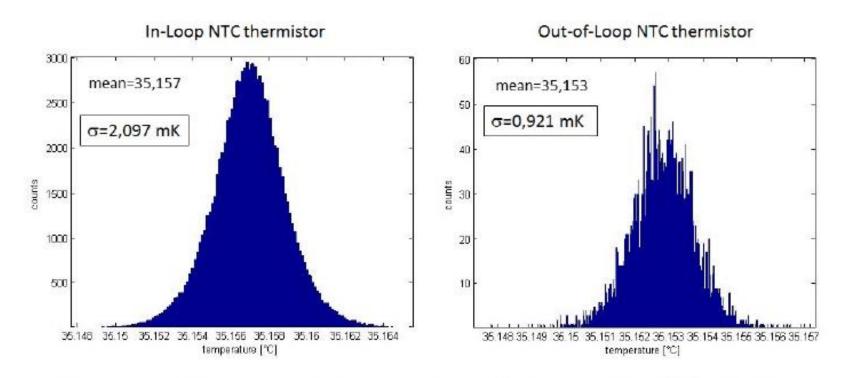



Figure 1.7. Measurement of the temperature stability obtained by a PID control loop.