TDR Ch4 (updates 2)

1.1 Already discussed

- 1.2 Already discussed
- 1.3 To be detailed (next week)
- 1.4 Problem of the threshold power
- 1.5 Already discussed but I could add other considerations (next week)
- 1.6 Completed with the final configuration and results.

Estimated threshold power $1.4\,$

As Yurke first showed in 1984 [REFERENCE] to make possible the production of squeezed light by a parametric down conversion process, it needs to work in *subthreshold* regime. So, it is important to calculate the threshold power for our OPO.

The value of the threshold depends on cavity parameters and the non-linear conversion efficiency of the crystal [REFERENCE WuXiaoKimble]:

$$
P_{th} = \frac{\pi^2}{4F^2BE_{NL}} \qquad \qquad B = \frac{T_1}{(1 - \sqrt{R_1R_2})}.\tag{1.1}
$$

where F is the cavity finesse at 1064 nm, B is the *buildup* parameter $\frac{1}{1}$ (the ratio between the oneway circulating power into the cavity and the incident pump power, in the absence of coupling) and E_{NL} is the nonlinear conversion efficiency². In case of perfect mismatch ($\Delta k = 0$), for our cavity $E_{NL} = 0.0115W^{-1}$, $B = 2.6$ and considering that the finesse of out cavity is about $F = 75$ we can found that the predicted threshold power is 14.7 mW.

²The nonlinear conversion efficiency is defined as

$$
E_{NL} = \frac{2\omega d_{eff}^2 l^2}{\pi \epsilon_0 c^3 w_0^2 n^3} sinc^2\left(\frac{\Delta kl}{2}\right)
$$

where l d_{eff} is the *effective nonlinear coefficient* $(d_{eff} = 10.3 \text{ pm}/V$ for KTP), l the crystal length and Δk the momentum mismatch between the pump beam and the beam at the fundamental frequency.

For SHG

$$
P_{2\omega} = P_{\omega}^2 \frac{2\omega^2 d_{NL}^2 l^2}{\pi \epsilon_0 c^3 w^2 n^3} sinc^2 \left(\frac{\Delta kl}{2}\right)
$$

this experiment. The poling reduces the effective nonlinear coefficient of the crystal by a factor

$$
d_{eff} = \frac{2d_{33}}{\pi},\tag{3.6}
$$

where the d_{33} coefficient is the scalar component of the nonlinear coefficient used in this experiment. For KTP, $d_{33} = 16.2$ pm/V which makes the effective coefficient $d_{eff} = 10.3$ pm/V [Sutherland, 2003].
I used this value

Measurement of nonlinear optical coefficients by phase-matched harmonic generation

Robert C. Eckardt and Robert L. Byer

I must investigate about the correct parameters to use

Temperature Control $1.6\,$

To reach the phase matching condition, as in the case of second harmonic generation, the crystal temperature must be kept constant, at a value of about 35° C. Also in this case, the desidered temperature is mantained by an active control loop, using a sensor and an actuator. In the control scheme used for the OPO, two NTC thermistors 3 and a peltier element 4 (dreven by an external DC power supply) are used.

One of the two thermistors (In-Loop) is inserted in an analog circuit (Wheatstone bridge) whose output voltage (related to the NTC resistence, and then to the measured temperature) is used for a PID control loop, running under LabView. The other thermistor (Out-of-Loop) is used to measure the temperature indipendently of the control loop. This last measurement it was

performed using a high precision digital multimeter⁵. This control loop make possible to reach a temperature stability of less than a mK for the Out-of-Loop measurement and of about 2 mK with the In-Loop thermistor.

³ Conrad Elektronik, Type: NTC-SEMI833, Part number: 188506 ⁴RS 197-0332

Figure 1.7. Measurement of the temperature stability obtained by a PID control loop.