

The status of Virgo experiment.

E. Majorana

National Institute for Nuclear Physics - Rome branch

National Astronomical Observatory of Japan, 3 July, 2009

First generation of interferometric GW detectors

NAOJ-030709

Outline

I) GW detection basics / interferometers

II) The intermediate steps

Virgo scientific case

Design of a wide-band ground-based GW detector

Designing Sensitivity requirements: initial Virgo

Pushing on the development of all the edge-technology solutions it is possible in principle to reach 10^{-21} - 10^{-23} Hz^{-1/2} strain sensitivity over a quite large bandwidth

Expected rate of coalescences: 3/yr within 40 ÷ 200 Mpc [Grishchuk et al. Astro-ph/0008481]

Coalescence event rate at ~ 20 Mpc [Kalogera et al. ApJ. 601, L 179, 2004] - 0.3/yr for NS/NS - 0.6/yr for BH/BH

Estimated rate of SNe:

several /yr in the Virgo cluster (20 Mpc).

INITIAL VIRGO !!!!

Designing Sensitivity requirements: initial Virgo

(((0)))

Pushing on the development of all the edge-technology solutions it is possible in principle to reach 10^{-21} - 10^{-23} Hz^{-1/2} strain sensitivity over a quite large bandwidth

Virgo Final Design 1998

VIRGO COLLABORATION http://www.virgo.infn.it/

Manpower: ~100_physicists, 100 technical support Overall cost: 76 MEuro INFN for site preparation

Site: European Gravitational Observatory Consortium (Cascina, Italy) ~10 Meuro/y

The European roadmap was delineated to concentrate resources on GW interferometers

(((0)))

Demanding seismic isolation system

test masses

Low-frequency sensitivity: main hardware components (7slides + photo gallery)

Last suspension stage

Image gallery (3 slides)

Suspension digital control

The mechanics of SA suspension is designed to reach 10⁻¹⁸ m/Hz^{1/2} at 10 Hz (thermal noise)

• The SA filters off the seismic noise above 4 Hz

- Below 4 Hz the mirror moves at the SA resonances by few tens of µm
- ITF locking requires resonance damping

TOP: Sophisticated control system for the suspension chain

BOTTOM: Efficient and noiseless payload control⁶

Suspension digital control (9 stations)

I) Local controls apply corrections to mirror position from local sensors. NO LIGHT II) Local controls receive error signals from global sensors.ITF LOCKED

Local Controls: Inertial Damping

- Inertial sensors (accelerometers):
 - DC-100 Hz bandwidth
 - Equivalent displacement sensitivity: 10⁻¹¹ m/sqrt(Hz)
- Displacement sensors LVDT-like:
 - Used for DC-0.1 Hz control
 - Sensitivity: 10⁻⁸ m/sqrt(Hz)
 - Linear range: ± 2 cm
- Coil magnet actuators:
 - Linear range: ± 2 cm
 - 0.5 N for 1 cm displacement
- Loop unity gain frequency:
 5 Hz
- Sampling rate: - 10 kHz

OVERALL CONFIGURATION OF A VIRGO SUSPENSION

Basic requirements: sensing and actuation diagonalization + hiearchical control

I.D. Performance

Actuation on the test masses: hierarchical control

Switch to low noise coil drivers

Basic optical control scheme

Suspension digital control

Basic interference setup: two conditions

Suspension dedicated work : further "cost" of LF sensitivity demand *Enjoing digital control in practice (with suspensions)*

on-fly tuning using two different blending filters

mix =0.5 'medium' attenuation of LVDT μ seism noise Comparable to the optimal configuration (fx @ 50 mHz)

two main issues

The problem of improving the system through independent optimization of each suspension:

wind-tilt noise (through accelerometers, f < 70 mHz)

µseism sea disturbance (through position control, 0.15-0.6 Hz)

Trade-off: $f_x = 50 \text{ mHz}$

mix =0.5 'medium' attenuation of LVDT μ seism noise Comparable to the optimal configuration (fx @ 50 mHz)

mix =0 (wind-earthqukes, f <70mHz): "aggressive" attenuation of accelerometer tilt noise.

two main issues

The problem of improving the system through independent optimization of each suspension:

wind-tilt noise (through accelerometers, f < 70 mHz)

µseism sea disturbance (through position control, 0.15-0.6 Hz)

Trade-off: $f_x = 50 \text{ mHz}$

mix =0.5 'medium' attenuation of LVDT μ seism noise Comparable to the optimal configuration (fx @ 50 mHz)

mix =0 (wind-earthqukes, f <70mHz): "aggressive" attenuation of accelerometer tilt noise.

mix =1 (µseism, 150-600 mHz) : "aggressive", slightly worsened against tilt noise.

NAOJ-030709

two main issues

The problem of improving the system through independent optimization of each suspension:

wind-tilt noise (through accelerometers, f < 70 mHz)

µseism sea disturbance (through position control, 0.15-0.6 Hz)

Trade-off: $f_x = 50 \text{ mHz}$

µSeism disturbance attenuated downstream (=>the concept of Global Inverted Pendulum Control)

The lock force applied to the marionette corrects the residual payload motion, whose rms above 100 mHz is \sim 1 order of magnitude smaller than the ground motion.

A top-stage control position reference with smaller x_s seismic noise allows to increase f_x without risks

µSeism-Free and Global Inverted Pendulum control

µseism is incoherent
along the arm baseline
=>µSeism reduced at
END suspension top-stages
by using position referred to
INPUT mirrors (GIPC);

Also the Acceleration !

µSeism is coherent
in the central area
=> µSeism-Free signals can
be reconstructed with respect
to INPUT mirrors (µSF)

INPUT TOWERS USED AS REFERENCE
MSC Vs robustness (2): earhquakes/GIPC

Mirr Corr

Mario Corr

(*Indonesia M6.8, Sep-20-08.31):

briefly... (sea activity versus quiet): combining sensors in order to reduce the impact of ground disturbance injected by suspension position sensor is worth !

(O))

NAOJ-030709

µSeism rejection strategies: VSR1start-VSR1stop (4 month run 2007)

INPUT mirror suspensions used as reference

µseism: rejection VSR1start-VSR1stop

INPUT mirror suspensions used as reference

Thermal noise

Intrinsic test mass noise source: thermal

NAOJ-030709

Mechanical thermal noise in suspension last stages

TN of the overall suspension should be considered

In Virgo "the payload" is the last multistage suspension system meant to control the mirror, isolated from external disturbance and subject to thermal fluctuation.

The need of advanced detectors

Advanced detectors target: few events/year

Several sensitivity improvements are possible using present infrastructures of Virgo and LIGO in two steps

By coherent combination of LIGO-Virgo Advanced SNR=8 detection with 90% efficiency is enhanced from 150-170 (single detectors) to 270 Mpc

INFN Roadmap A Proposal for the Gravitational Wave Experiments

The CSN2 GW Working Group:

M. Bonaldi (Auriga, DUAL), S.Braccini (CSN2), R.Dolesi (LISA), V. Fafone (ROG, SFERA), M. Punturo (Virgo), P. Rapagnani (CSN2, Convener)

Contents:

1 Next future evolution strategy	2			
1.1 The Extended Network of Detectors as an Instrument for Discovery and Astronomy				
1.2 The Near Term Evolution (2006 – 2007)				
1.3 The Medium Term (2008 – 2011)				
1.4 The Long Term (2012 – 2018)	7			
1.5 The Future: Beyond 2018				
2 Summary	Limited resources => focusing needed			
2006 – 2007: Near Term Network				
2008 – 2012: Medium Term Network	I Actual status analysis			
2012 – 2018: Long Term Network	II Perspective			
	III Cost analysis			

EM-INFNRM1-060509

The intermediate step

Virgo ----- Virgo ------ AdvVirgo

Practical issues and commissioning

(((Q)))

Virgo+, first step towards Vadv: main improvements (many others underlaying)

Schedule: Virgo+ with monolithic suspension in 2010

NAOJ-030709

Virgo+, first step towards Vadv: main improvements (many others underlaying)

New mirrors and coatings

- × New Suprasil end and input mirrors
 - + According to the Penn's noise model the loss angle expected for this material is about 10⁻⁹, a new perspective is open in the middle frequency range;
 - + But an higher finesse is needed: F=150 instead of the current 50.

The evolution of the Virgo collaboration towards Advanced-Virgo project

New groups joined the collaboration

INFN

- Firenze/Un.Urbino
- Genoa
- Napoli/Un. Federico II
- Perugia/Un. Perugia
- Pisa/Un. Pisa
- Roma/Un. Sapienza
- Roma 2/Un. Tor Vergata
- Padova/ Un. Trento
- EGO Physics group

CNRS

- APC Paris
- ESPCI Paris
- LMA Lyon
- LAL Orsay
- LAPP Annecy
- OCA Nice
- NIKHEF Amsterdam
- POLGRAV Warsaw (Polish Ac. Sci.)
- RMKI (Hungarian Ac. Sci. Budapest
- Birmingham Un. UK (MOU GEO-VIRGO)

The collaboration is fully engaged in Virgo upgrades (V+) and Advanced Virgo project

Virgo → Virgo+: milestones

May '07 – Oct '07 VSR1, First Virgo Science Run

Oct '07 – May '08 Commissioning

- scattered light mitigation, output Brewster window replaced by LN₂ cryotrap;
- ThermalCompensation (TCS) installation. Actuator magnets reduction.

9 May 2008 viewport breakdown at terminal NorthEnd !!!

May - Oct '08 Recovery & Virgo+ scheduled shutdown

- injection system infrastructure and electronics upgrade;
- NE payload dismount/mirror substitution;
- viewport breakdown investigation and replacement of all critical viewports;

Oct '08 - now commissioning

- electronics upgrade;
- power enhancement and TCS operation;
- viewport breakdown investigation and replacement of all critical viewports;
- baffle breakdown during misalignment with higher power.

7 July '09 VSR2, start of second Virgo Science Run Beginning if 2010 Monolithic Suspension upgrade.

Sensitivity improvements during commissioning and scientific runs

Background activity: four years spent to prepare preliminary Advanced Virgo design

Present staus of noise hunting: few ununderstood noise sources

After-accident recovery

- · Caused by weak design of viewport, identified and tested safer model
- Replaced about 90 view-ports throughout whole interferometer
- Cleaned and tested North-End tower
- New payload at North-End: coating of already polished spare mirror

New injection system

- New laser amplifier: up to 60 W (25 W at interferometer input)
- New pre-mode-cleaner
- Remotely tunable in-vacuum Faraday Isolator

Stable locking signals

- Interferometer no longer shows bi-stability during lock acquisition
- Different working point: modulation frequency changed 700 Hz
- Maybe caused by slightly different radius of curvature of new mirror

New electronics for Virgo+

- Replaced old real-time fiber links, more flexible signal routing
- Replaced old RIOs by real-time PC
- New ADCs: from 16 to 18 bit
- New quadrants and electronics for alignment
 NAOJ-030709

E.m. Environmental cleaning

- Replaced complete wiring of main power and grounding in central building
- Hot water pipes
- Replaced and doubled UPS
- Replaced 15 kV transformer
- Lowered air-speed of airconditioning

Virgo with 7W input laser power (Virgo+ > 20W)

Thermal Compensation Scheme (concept)

- Annulus and central spot from CO2 laser on both input mirrors
- Essential for compensating thermal lensing in input mirrors when working with high input powers
- Not yet stabilized in amplitude, some evidence for introduced noise

Finding the right TCS alignment & powers not easy;

- \rightarrow Time constants very long (~ 2 hrs) making adjustments time consuming
- \rightarrow Signals limited for understanding sideband behavior

Phase camera is a high precision wavefront sensor used measure individual fields (carrier and sidebands) deformed by thermal effects.

Thermal effect monitor & control

Thermal compensation power studied by using field amplitudes measured by Phase Camera

 \rightarrow "seed values" found in order to balance and make symmetric wavefront profiles.

17 W actual injection (Virgo+) equivalent to 8 W injection

 \rightarrow Slow drift control of TCS power implemented to stabilize sideband amplitudes

Note: critical TCS noise (high) and TCS set point parameters (stability/environmental)

NAOJ-030709

VSR2 parallel activities

Virgo \longrightarrow Virgo+ \longrightarrow AdvVirgo

Focus on monolithic suspension

The suspension thermal noise is reduced with the FS suspensions

In the low frequency range, the mirror pendulum thermal noise plays an important role

 $\Phi_{wire} = \Phi_o + \Phi_{th}(v) + \Phi_e$

	Thermoelastic Loss Angle		
$\Phi(\omega) = \omega \tau$	$d_{_{w}}$	wire diameter	
$\Phi_{th}(\omega) = \Delta \frac{\omega \tau}{1 + (\omega \tau)^2}$	$\Phi_o = 4$	$4.1 \cdot 10^{-10}$ loss angle	
$\Lambda = \frac{Y_{FS} \alpha_{FS}^2 T}{1}$	Y_{FS}	Young modulus	
$\Delta = \frac{1}{\rho_{FS}} c_{FS}$	$lpha_{\scriptscriptstyle FS}$	thermal expansion	
$c_{FS}d_w^2$	C_{FS}	specific heat	
$\tau = \frac{c_{FS} d_w^2}{2.16 \cdot 2\pi \cdot k_{FS}}$	$ ho_{\scriptscriptstyle FS}$	density	

Cagnoli G and Willems P A Phys. Rev. B, 65, 17

 Φ_{e}

<u>Eccess loss angle</u>

Frictional losses in the marionetta-wire clamps

Frictional losses in the mirror-wire clamps

Surface losses

$$\phi_{surf} = \phi_{FS} \left(\xi \frac{d_s}{V/S} \right) \approx 2 \times 10^{-5}$$

A.M. Gretarsson et al, PLA 270 (2000), 108-114

Thanks to the lower mechanical dissipation of the fused silica, a monolithic suspension promises an excellent performance by reducing all Φ_{wire} components.

A new payload with mirror monolithic mirror suspension

Virgo+ payload will be an evolution of standard Virgo payload embedding several "small" changes. In January 2008 we needed a development speed-up to converge in an actual installation project. => 3 main tasks

Clamped-fibre production

Production Accuracy

Violin mode	Bouncing Mode (Hz)	Distance between bend. Points (mm)
453±1	6.0±0.1	669.5±0.2
453±1	6.0±0.1	669.8±0.2
452±1	6.0±0.1	670.2±0.2
451±1	6.0±0.1	669.6±0.2
450±1	6.0±0.1	669.6±0.2

The assembly

Marionette (110 kg):

- amagnetic steel AISI 316L, dielectric arms (peek) \rightarrow no eddy current and magnetization effects;
- designed to be fully compatible with the monolithic suspensions assembly;
- equipped with mirror for LC purposes;
- step motor to displace a balancing weight;

Recoil Mass (60 kg):

- amagnetic steel AISI 316L outer cylindric mass (500 mm diam);
- dielectric inner ring (peek CF30) \rightarrow no stray currents or magnetization effects
- it carries four coils for e.m. actuation on magnets attached the mirror rear side;
- suspended with steel C85 wires (0.6 mm diam.)
- option: it can carry the markers for the LC purposes
- equipped with safety stop (peek made)

Mirror (21 kg):

- FS with lateral flats (350 mm diam), silica ears attached with silicate bonding
- suspended with silica wires (285 μm diam)
- magnets attached on rear side
- option: markers attached on front side (LC)

TASK II

Payload prototyping

- Steel AISI304 Marionette prototype with PVC arms.
- Dummy reaction mass, coils with peek supports.
- A mirror is inserted in the holder, and the system is balanced.
- All the pieces are secured by safety structures fibers bending point placed on the marionette's center of mass.

TASK II

NAOJ-030709

"Open air" laboratory...: Local Control with monolithic suspension

TASK II

Virgo commissioning experience must be embedded in new payload design

microseism due to sea activity is often active in the range 0.2-0.6 Hz

Murphy law: Virgo suspension chain and running payloads have z/p couples in the same range, which is in the microseismic frequency band => pitch alignment suffers ...

Mechanical model of the payload can be validated and then used to finely predict the mechanical parameters to have specific internal modes

TASK III

Resistance to shocks, dust pollution, to humidity

NAOJ-030709

Transportation test:

- × On the dummy payload
- Mechanical vibration monitored with accelerometers
- The test was successful (no broken fibers!

<u>Crash Test :</u> see movie on YouTube (search monolithic crash), fiber robustness tested

80 of 16

Conclusions

- Virgo is approaching its second Science (VSR2) run with sensitivity and reliability significantly improved.
- The present configuration take into account a **first set of Virgo+ improvements** (small magnets, cleaner e.m. environment, injection, mode cleaner, TCS, cryotrap link).
- Further work improving TCS stabilization (non trivial), before the run.
- Non invasive further environmental noise cleaning (e.g. turbo pump fans...)
- Science run starting on July 7th : good duty cycle, expected to be limited by standard earthquake rate (~1/week) and weekly maintenance.
- **During VSR2** some noise sources recently identified (e.g. TCS power stabilization, AR output window, etalon thermal stabilization) will be addressed.
- Continuous operation is always a good opportunity also to improve the suspension system and to use the interferometer as a unique accelerometer.
- Second Virgo+ set in early 2010: monolithic suspension and high finesse ($50 \Rightarrow 150$).

VirgoAdvanced baseline document defined; High priority assessment from founding authorities; Actual funding will be sustained by Virgo+ reliability.

NAOJ-030709

VadV: COST & milestones

20 MEuro (Nikhef will contribute by ~10%)

Year20092010201120122013FTE1935252720Virgo + EGO personnel fulfill this request.

1. July 2009 The Project starts with the mirror bulk order.

2. July 2011 Shutdown of Virgo+ for Advanced Virgo installation.

3. Dec 2013 Completion of assembly and integration phases.

4. July 2014 First one-hour-long operation (i.e. needed degrees of freedom controlled).