

SAT Control System ((C))//RG

Weekly Meeting January 31st, 2012

Meeting Agenda

- Running activities status report (all)
- Control System Architecture (A.Gennai)
- Development plan (A.Gennai)
- Mode Cleaner activities (A.Gennai)
- AOB

Control System Architecture

- Summary
 - Goals and requirements
 - Conceptual/Preliminary Design

Goals & Requirements

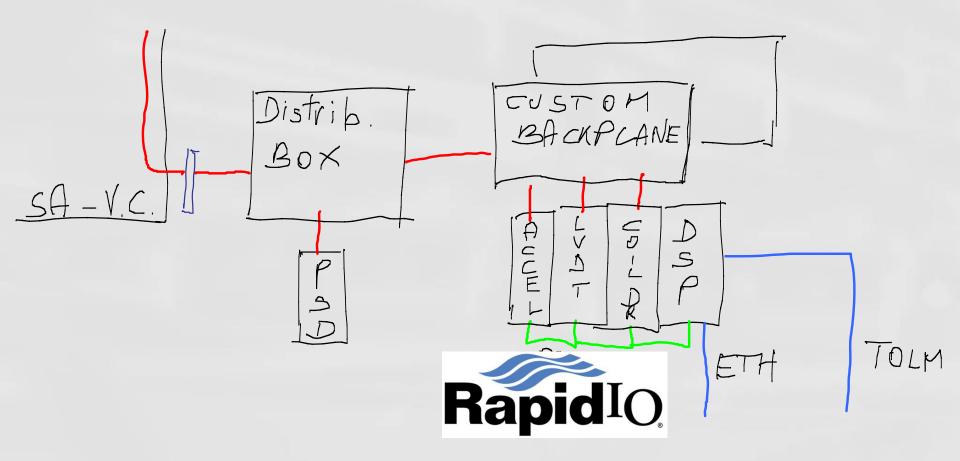
- Virgo/Virgo+ was a success! (from suspensions point of view)
 - Duty cycle extremely high (few hours off in more than 10 years of operation)
 - Virgo sensitivity never limited by our system.
 - Two major updates (coil drivers and DSPs) almost transparent to operation.
- Why are we talking about a new control system?

Goals

- Replace
 - Obsolete and old components
 - Boards have been running for years therefore MTTF is now too short to start a new decade (unless we start replacing all capacitors and chips)
- Reduce
 - Number and type of boards.
 - Analog signal path length.
 - Connections along the signals path.
 - Power.
- Improve
 - Reliability, operability and maintenability.

Requirements

- Not so many changes:
 - Tiltmeters (t.b.c.)
 - Piezos (today confirmed)
 - Filter #7 Control (6 d.o.f.)
 - Marionette Control (4 d.o.f)
 - → Higher closed loop bandwidth for signal recycling operation → much shorter delays → much higher sampling rate (100 kHz t.b.c. very preliminar)
 - Something still pending since a few years related to software (bugs, supervisor, separate dsp code and parameters, better GUI, data processing, ...)


Conceptual Design

- New DSP
 - DSP know how is crucial for Virgo: we MUST develop a new DSP every few years
 - Connectivity no longer adequate
 - TMS320C6678
 - Eight TMS320C66x DSP Core Subsystems
 - 320 GMAC/160 GFLOP @ 1.25GHz
 - Four Lanes of SRIO 2.1 5 Gbaud Per Lane Full Duplex
 - Two Lanes PCIe Gen2 5 Gbaud Per Lane Full Duplex
 - Ethernet MAC Subsystem Two SGMII Ports w/ 10/100/1000 Mbps operation
 - 64-Bit DDR3 Interface (DDR3-1600)

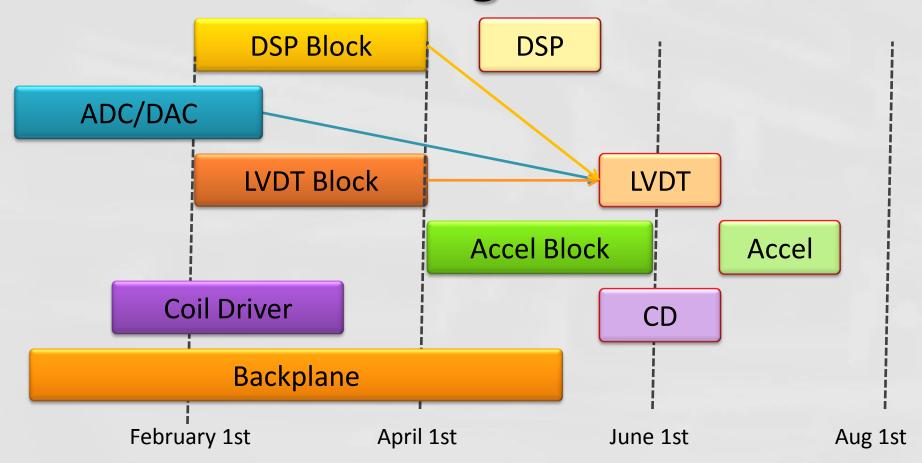
Conceptual Design

- Merge front-end electronics with data conveters
- Few boards to be developed
 - LVDT Readout
 - Accelerometer Readout
 - Coil Drivers
 - DSP
 - Custom backplanes and power supply
- Motor Control -> INFN Trento/Padova
- Piezo Control > Physik Instrumente

Sketching ...

...[continued]

- All electronics in Eurocard 6U crates located next to the tower.
- No CPU (RIOs)
 - Direct communication with DSP via Ethernet
- No VME
 - Communication among boards via RapidIO


Reuse Blocks

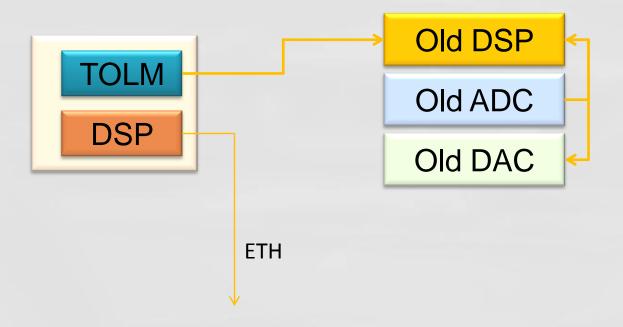
- Each board is composed by a small subset of basic blocks
 - DSP block
 - Supervising, processing and communication
 - Data Conversion block
 - ADC-DAC + controlling FPGA and basic analog circuits
 - Analog block
 - Specific for each board

Development Plan

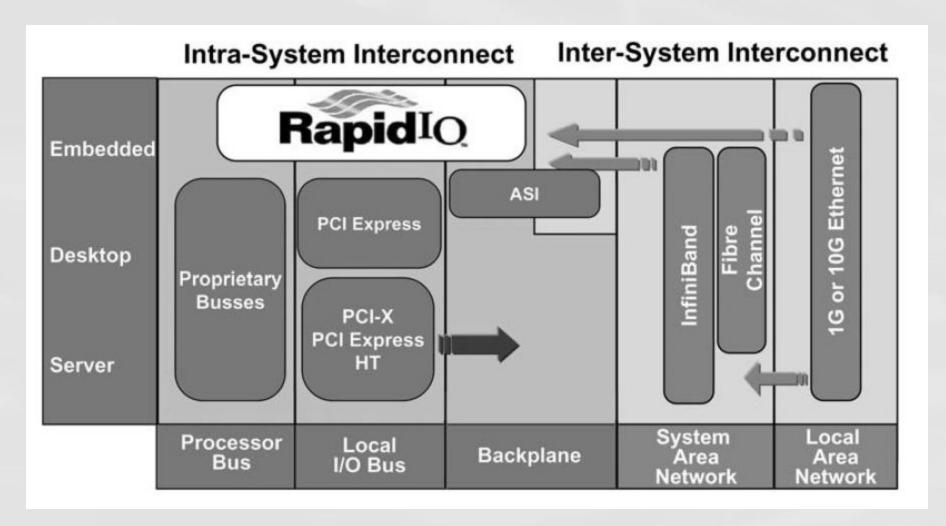
- Manpower
 - INFN Pisa 3-4 FTE
 - EGO 0.5 FTE (t.b.c.) + 1 FTE (software, t.b.c.)
 - Poland ???
- Organization
 - Each "Reuse Block" has one supervisor
 - Board merging by fewer persons (Alberto, Carlo)
 - Extensive use of firms for components procurement, assembly and preliminary tests.

Short Term Planning

All orders out within the end of July (2012 ©)


Mode Cleaner

Tentative installation plan


- MC activities will start in March (t.b.c.)
 - Need LVDT readout during SA disassembly
 - Need a first control unit within the end of 2012
 - Test piezo (t.b.c.)
 - Test F7 sensors/actuators(t.b.c.)
 - **a**
- So many things to do, so little time

Prototype DSP carrier

Development of a carrier board for a commercial DSP mezzanine and one TOLM

RapidIO

