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Unmodelled transient sources 
aka the Bursts

Generalities on short-duration GW signals. Searching for 
candidate events in data. Network analysis strategies. Upper 
limits, detection confidence and all that

Nicolas Leroy 
Laboratoire de l'Accelerateur Lineaire d'Orsay

VESF DA School – Spring 2011
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GW vade mecum

● GW emission from quadrupole momentum

● 2 polarizations : +, x

● Propagating at celerity c

● Power emitted:

– Compact object

– Relativistic motion

– Large asymmetry
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GW vade mecum
● We will only focalize on:

– Ground based systems

– Large band detector – Michelson interferometer

– Frequency band : 50 Hz -> 5 kHz
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Transients sources

?

Pulsars/Neutrons 
stars
( instabilities) 

Compact binary 
coalescence of neutron 
stars &/or black holes

Supernovae
(asymmetric core 
bounce) 

Cosmic strings

The unexpected
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Bursts : Let's define the beast

● All transient signals with a duration < 1 second

● Recover a large variety of type of sources :

– most of the time : unmodelled sources 

– Few of them : simples models exist

– Numerical simulations give plenty of waveforms

● Easily mimic by glitches in the detector

● Need robust analysis

● Using a network will help a lot !
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Sources
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Sources
● A gravitational wave source needs to be

– compact

– asymmetric

– relativistic

● What type of source

– Collapsars and supernovae

– Black holes

– GRB, SGR, pulsars glitches

– Exotic physics
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Stellar collapse

@ Evan O'Connor (Caltech)
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Stellar collapse in a nutshell

@ Christian Ott
Above 
Chandrasekhar 
limit (electrons 
pressure)

Collapse stops 
when nuclear 
density is reached

Rebound 
then shock 
through 
infalling core

If neutrinos 
emission

Rotation

Rotation
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Supernovae Type

@ Christian Ott

Not for us !
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The hard life of simulations
● Different problems on simulation side :

– How to simulate such complicate objects ? - problem 
with resolution and dimension (and computation 
problems)

– Which type of physics :
● Full general relativity and/or approximation
● microphysics : neutrinos, convection, 

instabilities, MHD, ...
● Equation of state of nuclear matter

– How to light a supernovae ?

– How much spin on the initial star ?

Large uncertainties on the waveforms

Non linear 
equations
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Collapsar GW emission

● Simple case : 2D axisymmetric  

– Generic features :
● Peak for the core bounce
● Ring down of the central object

● However waveforms could 
change a lot

● Important parameters:

– Equation of state

– spin

Simulations from Dimmelmeier et al
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Collapsar GW emission

● Last generation of simulation

● Usual shape

● convergence on the results Rotation increasing

Object mass (M
⊙
)

One EOS
Change in rotation

Two EOS

Using LIGO sensitivity
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Collapsar GW emission

● Creation of bar mode

● More than the bounce – acoustic mechanism

– Require excitation of large amplitude proto neutron 
star by turbulence and instabilities
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How far can we go ?

@ Peter Kalmus

Virgo cluster

Events rate : 3-5 / galaxy/ century .....
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Black hole

● When created or excited, black hole will lost energy 
through GW emission 

● Typical waveform : damped sine

● Important parameter : Mass

● Only way to detect directly such object 

10-19

4

1

h(t-t0)

t/s0 0.1
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BATSE catalog

Gamma-ray bursts

● Find in the 70's : burst of gamma-rays

● Isotropic sky distribution

● 2 populations 

2 secs

T90 : duration of 90 % of 
photons counts

Spectrum peak at higher
energy

Spectrum peak at lower
energyshort

long
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Gamma-ray bursts

● Long GRB :

– Massive rapidly spinning star 
collapse or explosion (hypernovae)

● Short GRB :

– Coalescence of compact objects

● Gamma emission : 

– 1051 erg ~ 10-3 M
⊙
c2

● Distance : ~ Gpc

● E
GW

 ≲ 10-2 M
⊙
c2 
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Soft gamma rays repeater

● Emit flares of soft gamma rays 1042 -> 1046 erg

● Certainly magnetar (neutron start with B>1015G)

● Could be related with cracking of the crust

– Possible excitation of of vibrational modes

– May couple to GW

Swift - SGR1900+14
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Pulsar/Neutrons star glitches

● Some pulsars exhibits glitches in pulsating frequency

● Mechanism not clear but

– Could be also crust 
cracking

– Differential rotation 
between core and crust

● Could coupled to GW Mean post glitch  
         subtracted
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Exotic physics (?)

● Cosmic strings : topological defect 1D – formed when  
having a phase transition in the primordial universe

● If 2 parts of the string meet, possible reconnection

– Loop -> oscillation -> cusps - GW emission

● Will emit GW with a known-signal : power law in 
frequency : f-4/3 

GW signal from a 
string cusp
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Searching for bursts



 

23

Searching for Bursts signals

● We try to find weak signals 

● For most of the cases we do not know the waveform

● Noise is dominant on the output of the detector

Signal with SNR 8

Noise for Virgo
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Linear filtering

● Generic form : correlation between data stream and a kernel

● Wiener worked on recovering a known signal u mixed with 
gaussian noise n(t), best solution is :

● Optimal visibility is given by SNR:

∫h (τ)ϕ( t−τ)d τ

ϕ̃( f )=
ũ ( f )
Sn( f )

(Fourier 
Transform)

Power spectral density

ρ
2
=∫

∣ũ( f )∣2

Sn( f )
df
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The match filtering technique
● Next step : using a template (exact waveform, an 

approximation, a simple shape, ...) and slid it on the data

● We can only run on a limited number of templates

– You need to tile your parameters space by computing 
matching between 2 templates

example with Gaussians :

c (t)=
〈s( t ) ,d ( t )〉
∥s∥

〈s (t) , d (t)〉=
∫ s̃( f ) d̃*(f )

Sn( f )
df ∥s∥=max t 〈s (t) , s (t)〉

1/2

Γ(ψ,ϕ)=max t 〈ϕ(t ) ,ψ( t )〉

σ k=(1+2√Γ)
k−1
σmin ∀k∈ℕ

*



 

26

Time-frequency

● Using time and frequency information on time series could 
help a lot

● Most wide-known example : Fourier transform

● One limitation : the Heisenberg-Gabor incertitude

σ t=∫ (t−t 0)
2∣s (t )∣2dt with t 0=∫ t∣s (t)∣2dt

σ f=∫( f−f 0)
2 ̃∣s( f )∣2df with f 0=∫ f ∣s̃ ( f )∣2df

σ tσ f⩾
1

4π

TF pixel
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Fourier Transform

● We have data sampled -> we cannot have info above 
Nyquist frequency (f

sampling
/2)

● Discrete Fourier transform:

– Naive implementation : O(N2)

– FFT implementation : O(N log N)

● FFT on non periodic signal -> power leakage

– Need to window your data

● Need to have 2N samples for FFT

– Perform zero-padding
For more information, have a look
To any Numerical Recipes book



 

28

Bank of templates
● Using sine/cosine Gaussian type signal:

– Allow to cover the full time-frequency plane

– Well define in frequency : f

– Allow to fix template length : Q=σ×2π f

Limit on the number
of templates

Short duration
signals
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Clustering
● Now we need to define the notion of event

– Time

– Frequency

– Energy

● We will rearrange the TF map
in clusters of pixels

– Thresholding : remove “noise
only” pixels

– Find joint pixels above 
threshold

– Merge joint clusters

– Threshold on the cluster
energy

F
re

q

Time

Energy
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Compute efficiency

● How to compare efficiency between algorithms

● One possible tool : Receiver Operating Characteristic 
(ROC) : efficiency vs false alarm probability

● Look also to efficiency vs strain GW hrss=√∫∣h+∣
2
+∣hx∣

2dt
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Single ITF output

● Now is time to apply your Data Quality flags

● Continue to clean as must as possible your tails

● Use external triggers

● Do you trust enough your triggers distribution ?

● Put an upper limit ...

● .... Or use others instruments to improve our analysis
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Network analysis

● Beam pattern

● Coincident vs coherent

● Sky localization
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What is available on the market ?
Virgo (3 km)

LCGT/TAMA

Livingston (4 km)

Hanford (4&2 km)

Only for large band detectors

GEO (600m) 27m
s

10
m

s
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What do we have ?
● We will focus on the LIGO-Virgo network

– H1L1 : 10 ms

– H1V1 : 27 ms

– L1V1 : 26 ms

● Signal in each ITF:

● Noise is (most of the time) independent from one site to 
the other

● Strength of the GW signal will depend of the beam 
pattern and the relative sensitivity 

d i( t)=F+ ,i(t )h+(t)+F x ,i( t)hx( t)+ni(t )
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Beam pattern : we do not point into the sky !
● Beam pattern will depend on the position and orientation 

of the arms of the detector

– Maximum of sensitivity if GW arrives by zenith (or 
nadir)

– Null sensitivity if coming through the bisectrix

● Dependence also on the polarization of the source

● Due to earth rotation 
we can scan the sky

F+=
1
2
(1+cos

2
(Θ))cos (2Φ)cos (2Ψ)

−cos (Θ)sin(2Φ)sin (2Ψ)

Fx=
1
2
(1+cos

2
(Θ))cos (2Φ)sin (2Ψ)

−cos (Θ)sin (2Φ)cos (2Ψ)

Detector

Polarization
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Beam pattern : Hanford

F=F+
2
+Fx

2



 

37

Beam pattern : Livingston

F=F+
2
+Fx

2

LIGO detectors are almost co-aligned
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Beam pattern : Virgo

F=F+
2
+Fx

2

Virgo detector is quite misaligned
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On the LIGO-Virgo network

F=∑
i

F+ ,i
2 +Fx ,i

2
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Using sky coordinates

H1

L1

V1

● Earth rotation effect

● Thanks to the network we can 
cover almost the full sky

a (t)=
−1
16

sin(2γ)(3−cos (2l))(3−cos (2δ))cos (2Ω)−
1
4

cos (2 γ)sin( l)(3−cos (2δ))sin(2Ω)

−1
4

sin(2 γ)sin (2l)sin (2δ)cos(Ω)−
1
2

cos (2γ)cos( l)sin(2δ)sin (Ω)−
3
4

sin (2γ)cos2
(l)cos2

(δ)

b (t)=−cos (2 γ)sin(l)sin(δ)cos (2Ω)+
1
4

sin (2 γ)(3−cos (2l))sin (δ)sin(2Ω)

−cos (2 γ)cos (l)cos (δ)cos (Ω)+
1
2

sin (2 γ)sin(2l)cos (δ)sin(Ω)

(F+

F x
)=( cos(2ψ) sin (2ψ)
−sin(2ψ) cos (2ψ))(

a (t)
b (t))

Ω=κ t−(α+L)+TGreenwich (0)

Source :α(right ascenscion) ,δ (declination) ,ψ(polarization)
Detector : l (latitude) , L(longitude) ,γ(bissectrix orientation (towards north))
Earthrotation : κ

Galactic coordinates
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Coincident analysis

● From each ITF, triggers with:

– Amplitude

– Frequency

– Time

● Try to find coincident events in time:

– If low trigger rate 
ie Event duration < diff time consecutive events

● Adjusting correctly time window
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Strategy of analysis

● When use have more than 2 detectors not necessary co-
aligned (like LIGO-Virgo)

– Ask for a triple coincidence
● Reduce a lot our FA probability and increase 

our confidence
● Reduce also your sky coverage to 20 %

– Ask for an “OR” of double coincidences
● Increase a lot the sky coverage and your 

probability to detect
● Next question : how significant is your events 

distribution ? 
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Determine significance
● Network analysis give a powerful way to estimate 

background

● Noise is (almost) uncorrelated

● You can “simulate” a longer time acquisition by time-
sliding your date streams (or triggers)

– You are sure to not have any GW events

H1

L1

V1

0-lag
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Determine significance - 2
● Do not use “typical” time scale for the time step

– Suspensions frequencies, ....

● Do not count 2 times the same configuration

● It is better to not shift too much to avoid long scale 
coherence:

– Day time, sea activity, ..

● we must use time shift larger than true signal

● How many time shift ?

– If you want to check a 5σ level, you need to reach a 
probability of 5.7 10-7

– For one year of living time, you need to accumulate 
1750000 years
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Determine significance - 3

● As we have no GW events in the time-shifted data set, 
the events must follow a Poisson distribution

● Take properly into account the change of live time for 
each time slide

● Put your threshold on the false alarm probability:

– Lower threshold increase efficiency for detection

– But also increase your number of background triggers
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Software injections
● If you have a null result in your coincidence

– Put an upper limit

● You have detection and you want to give results on the 
rate

● You need to determine the efficiency of the analysis

● Inject coherently software 
injections

– Time delays

– Amplitudes

– Take into account 
astrophysics prior 
(if possible)

ϵ(hrss)=
ϵmax

1+rmid
α(1+β tanh (rmid ))

with rmid=hrss/hrss
mid
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Open the box

● Now you can analyze the 0-lag configuration

● If you have event(s) above your threshold :

– Check your event(s) !

– Extensive follow-up !

– Lot of excitation !

● If you have nothing or kill all events

– Put upper limits
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Upper limit

● The main question is : how do you define your threshold 
when performing efficiency :

– Loudest event

– False alarm rate

● Then you can compute the 
upper-limit  on event rate with

● You can also try to translate 
in distance vs energy

ℜ90% (hrss)=
−ln (1−0.9)

T ϵ(h rss)

for a SG :EGW≃
D2 c3

4G
(2π f 0)

2hrss
2
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Recap on coincident analysis

Data Detector 1

Data Detector 2

Triggers

Triggers

Coincidence

Selection
+

Data
Quality

Significance?

Data stream
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Recap on coincident analysis

Data Detector 1

Data Detector 2

Triggers

Triggers

Coincidence

Selection
+

Data
Quality

Significance
wrt 

background

Data Detector 2
time-shifted wrt 1 Data stream

Background stream

DETECTION?
NO?
→ Upper limits
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Recap on coincident analysis

Data Detector 1

Data Detector 2

Triggers

Triggers

Coincidence

Selection
+

Data
Quality

Significance
wrt 

background

Signal injections

Data Detector 2
time-shifted wrt 1

Search efficiency

Data stream
Injection stream
Background stream

DETECTION?

UPPER LIMITS

Various coincidence schemes: union of configurations
Increasing the number of coincidences enables be more selective (but less efficient)

Data Detector 1

Data Detector 2

Triggers

Triggers

Coincidence

Selection
+

Data
Quality

Significance
wrt 

background

Data Detector 2
time-shifted wrt 1 Data stream

Background stream

DETECTION?
NO?
→ Upper limits
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Coherent analysis

● Idea : sum the data streams to increase the SNR

● For each position on the sky :

– Compute time delays

– Shift the streams

– Take into account
beam pattern

– Take into account
sensitivities
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Coherent formalism
● Based on a null stream

[
d1

⋮
d N
]=[

F i
+
/σ i

⋮

F N
+
/σ N

]h++[
F i

x
/σi

⋮

F N
x
/σN

]hx+[
n1

⋮
nN ] → d=F+

w h++Fx
w hx+n

Vector of whitened data time shifted at 
a given time/frequency for a given sky position

E tot=∣d∣
2 Total energy

Enull=Etot−∣F+
w d∣2−∣Fx

w d∣2=∣K.d∣2 Null energy ie noise only

Einc=∑
α =1

N

∣Kαd α∣
2 Incoherent energy ie contribution fromeachdetector
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Glitches removal

● Compare null and incoherent energy:

– GW is cancelled in E
null

 -> E
inc

/E
null

 is large

– No cancellation for glitches -> E
inc

/E
null

 ~ 1

Example on GRB 
analysis
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Schematic view for coherent analysis

Data Detector 1

Data Detector 2

TriggersCoherent 
combination

Selection
+

Data
Quality

Significance
wrt 

background

Signal injections

Data Detector 2
time-shifted wrt 1

Search efficiency

Data stream
Injection stream
Background stream

DETECTION?

UPPER LIMITS

The data of multiple detectors can be combined coherently
Sky positions are scanned to take into account the time of arrival 
and the antenna pattern of each detectors
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Coincident vs coherent

● Coincident analysis:

– Faster : one pass is enough

– More robust to possible errors

● Coherent analysis :

– Sensitive to weaker signal

– Scan all sky positions – a null result in one ITF could be 
used for sky reconstruction

● Or make a coincident analysis and a coherent follow-up
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Position Reconstruction

t
Livingston

t
Hanford

t
Hanford

t
Virgo

SOURCE

GHOST
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 How to reconstruct a position

● One instrument and no external observation : no way 

● 2 sites (with data) :

– One time delay measurement

– All directions giving the same delay are equiprobable

– Circle on the sky map
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How to reconstruct a position
● 3 sites:

– If all detector observed a signal -> 
triangulation

– But two possible directions

– If only 2 observed a signal -> you can put 
constraints on the circle

● 4 sites (well separated):

– No more problem !

t
Livingston

t
Hanford

t
Hanford

t
Virgo

SOURCE

GHOST



 

60

Circles on the sky
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Using external triggers

● EM observatories release alerts/information on 
interesting events like for GRB (GCN)

● Get time and positions

– Position : simplify for coherent analysis

– Time : reduced background

can gained up to a factor 2 in sensitivity

● You can also used other messengers like neutrinos from 
ANTARES/Ice Cube
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Use a correct time window
● With an external trigger, you need to define the time 

window on which searching for the GW

– Need to take into account astrophysical scenario
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Take into account for sky error position
● Limited resolution on the external observatories

– From few arcminutes (BAT - Swift) to few degrees 
(GBM-Fermi)

– Can change the coherent calculation

– Tests different sky positions

Example using 
GBM-Fermi trigger
Color scale is the probability
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What else?

● h(t) signal is done after calibration and reconstruction of 
the transfer function of our instrument:

– From dark fringe photodiode (V) to a dL/L

● 2 possible type of errors:

– Amplitude error : 10 to 20 %

– Phase offset -> timing error : ~ 10us

– Differences between sites

● All pipelines have a resolution also in timing : few ms
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Some recent results
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All-sky searches

● Not yet a detection

● Put limits on events rate

– 50 < f < 2048 Hz -> rate < 2 events/year 

Rate (90%CL) vs frequency

10-2 yr-1 Mpc-3

8 10-7 yr-1 Mpc-3
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GRB 070201

● Short GRB detected in 
direction of Andromeda 
galaxy

● Both CBC and GRB 
analysis 

● Coalescence scenario in 
M31 excluded at 99 % CL 

● SGR scenario in M31 still 
possible 

● Coalescence in a galaxy 
behind M31
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Some references
● Supernovae and GW : Ott, CQG 26, 063001, 2009

● Sources (a bit old but give hint on h amplitude): Thorne, in 300 
years of gravitation, Univ. of Chicago Press 

● A.-C. Clapson, PhD thesis Univ. Paris-Sud, 2006

● M. Was, PhD thesis, Univ. Paris-Sud, to be published

● LIGO/S1 paper :B. Abbott et al., PRD 69, 102001 (2004) 

● LIGO/S2 paper :B. Abbott et al., PRD 72, 062001 (2005)

● Virgo/C7 paper : Acarnese et al., CQG 26, 085009 (2009) 

● Sky reconstruction : Cavalier et al., PRD 74, 082004 (2006)

● S5/VSR1 all-sky : Abadie et al., PRD 81, 102001 (2010)

● GRB070201 : B. Abbott et al., ApJ 681, 1419 (2008)
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What's next ?

● Play with a templates bank – this morning

● Search for GW in a network of detectors – morning and 
this afternoon
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Template

● Compute match between template and signal

● Example under matlab could be find in 

/data/procdata/bufferv29/Bursts/VESF2011matchfiltering/test_prog.m

● Try to pave 1D 

– One Q

– Different frequencies

● Try to pave 2D
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Network analysis

● VSR1 (summer 2007) data

– L1 and H1 have been simulated by time shifting V1 triggers

● We will use output of omega triggers

– SG template bank

– Triggers already produced for the network (GPS, freq, 
bandwith, SNR)

– DQ category 1 and 2 already applied

● For the coincidences

– Tool is provided, allow coincidence both in time and 
frequency

● For efficiency studies, software injections already done
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Work to be done

● Estimate coincidence window

– We will start to use time only – add frequency in a 
second step

● Studies background using time-slide technique

● Estimate our threshold

● Estimate our efficiency – compare with the ITF sensitivity

● Study the 0-lag
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Work to be done - 2

● Directory (${Burstsn}) 
/data/procdata/bufferv29/Bursts/VESF2011/network/

● You need to add : ${Burstsn}/environment.csh , in your .cshrc

● Code for coincidence : ${Burstsn}/coinc.exe, run it without arguments 
to get help

● Data are under: ${Burstsn}/threshold_5.9:

– #_raw : raw triggers

– #.SG9_* : raw triggers + software injections Q=9, f=100, 200 
and 300Hz

● List of injections : ${Burstsn}/listinjecs_# (GPS and hrss for each type 
and ITF)

● List of hrss : ${Burstsn}/hrss_injections.txt
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Useful definition ?

● Network snr : 

● Double network : OR (double coincidences)

● Triple network : AND coincidences

● hrss : 

√∑
i

SNRi
2

hrss=√∫∣h+∣
2
+∣hx∣

2dt
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