Data Analysis: Coalescing Binaries (a brief introduction, mostly qualitative)

Frédérique MARION I VESF Data Analysis School February 11th, 2009

- A reminder about what we are looking for
 - » The source, the waveform
- The basic search technique
 - » Matched filtering
- Exploring the parameter space
- Real life: dealing with background
 - » Coincidences, vetoes
- Network analysis
- A brief review of LIGO-Virgo CBC searches

The target sources

• Final evolution stage of compact binary systems

» Systems like PSR1913+16 reaching coalescence of the two stars

• System may involve

» Neutron stars

$$f_{\rm ISCO} = \frac{2.8 M_{\odot}}{M} \ 1600 \ {\rm Hz}$$

- » Black holes
 - For ground based detectors, stellar mass black holes
 - Advanced detectors: up to intermediate mass black holes
 - Super-massive BH: lower frequency, space based detectors

What makes CB promising sources?

• We know "a lot" about the sources

- » Such systems do exist
 - Although rates are uncertain and low...
- » The emitted waveform is known with some accuracy
- A nice laboratory to study General Relativity
 - » Confront waveform prediction with observation
 - » Study GR at work in the strong field regime
- A nice tool for astrophysics and cosmology
 - » Parameters of the system can be extracted
 - » CB are standard candles: source distance can be measured
 - Opens the possibility of measuring the Hubble constant
 - » Are short gamma ray bursts associated to coalescing binaries?

[Ref.1]

Rare events: BNS systems

Galactic rate

- » CB rate in the Galaxy inferred from known systems, expected to reach coalescence in a time less than the age of the Universe
- » Only 3 such systems known today (including PSR 1913+16)
- » Estimate dominated by most recently discovered system (PSR J0737+3039)
- » Estimate depends on the modeled Galactic distribution of neutron stars
- » R ~ 1 1000 MWEG⁻¹ Myr⁻¹, realistic estimate R ~100 MWEG⁻¹ Myr⁻¹

Detected rate

[Ref.2]

- » Rate of detected events depends on number of galaxies probed by the detector
- » Related to detector horizon distance (distance at which an optimally located and oriented source would produce a SNR of 8)
 - For initial detectors (D_{horizon} ~ 30 Mpc)

 $N \sim 2 .10^{-4} - 2 .10^{-1} \text{ yr}^{-1}$, most probable $N \sim 1 / (50 \text{ yr})$

 For advanced detectors (assuming 15 times improved horizon distance) most probable N ~ 40 / yr

Rare events: BH-NS & BH-BH

• No known system involving a black hole

- » Rely on stellar evolution models to predict rate
- » Galactic coalescence rate smaller for BH-NS or BH-BH systems than for NS-NS systems
- » Systems with BH can be seen up to larger distances
- \Rightarrow Overall detected rate larger ??
- » Initial detectors

 $N_{BHBH} \sim 7 . 10^{-3} \text{ yr}^{-1}$ $N_{NSBH} \sim 4 . 10^{-3} \text{ yr}^{-1}$

» Advanced detectors

 $N_{BHBH} \sim 20 \text{ yr}^{-1}$ $N_{NSBH} \sim 10 \text{ yr}^{-1}$ Large uncertainties on

those numbers!!

[Ref.3]

Phases of the evolution

Inspiral phase

- » The realm of post-Newtonian expansions
- Accurately known chirp, at least for those light enough systems well described by adiabatic models

duration ~ 34 $(\frac{M}{M_{\odot}})^{-5/3} (\frac{f_0}{40 \text{ Hz}})^{-8/3} \text{ s}$

• Plunge, merger and ringdown

- » The realm of numerical relativity
- » Duration << 1 s
- » Not crucial for detection unless it is the only part of the signal within the bandwidth of the detector

The waveform (I)

 $h(t) = F_{+}(\theta, \phi, \psi) h_{+}(t) + F_{\times}(\theta, \phi, \psi) h_{\times}(t)$ source F_+ and F_{\times} : detector response functions depend on sky location (θ, ϕ) and polarization angle ψ $F_{+} = -\frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi\cos 2\psi - \cos\theta\sin 2\phi\sin 2\psi$ $F_{\times} = \frac{1}{2}(1 + \cos^2\theta)\cos 2\phi\sin 2\psi - \cos\theta\sin 2\phi\cos 2\psi$ h_{\pm} and h_{\times} are obtained from post-Newtonian developments Up to 2.5PN order in amplitude: $h(t) = \sum_{k=1}^{N} \sum_{m=0}^{5} A_{k,m/2}(t) \cos(k \varphi(t) + \varphi_{k,m/2})$ with $A_{k,m/2}(t) \propto (2\pi M f(t))^{(m+2)/3}$

- » Usual searches use restricted waveforms, namely waveforms where all terms with k \neq 2 are neglected: other harmonics of the orbital frequency are ignored
- » OK from the detection point of view, at least for initial detectors
- » May reduce the accuracy of parameter estimation, especially for high mass systems

[Ref.21]

8

The waveform (II)

The restricted waveform at the detector can be written:

$$h(t) = \frac{1 \text{ Mpc}}{D_{\text{eff}}} A(t) \cos(\varphi(t) - \varphi_0)$$

with
$$D_{\text{eff}} = \frac{D}{\sqrt{F_+^2 (1 + \cos^2 \iota)^2 / 4 + F_\times^2 \cos^2 \iota}}$$
 the effective distance

(distance of an optimally located and oriented source that would produce the same signal strength)

$$A(t) = A f(t)^{2/3}$$

At Newtonian order:

$$f(t) = f_0 \left(1 - \frac{t}{\tau_0}\right)^{-3/8} \qquad \varphi(t) = \frac{16\pi f_0 \tau_0}{5} \left[1 - \left(\frac{f}{f_0}\right)^{-5/3}\right]$$
$$\tau_0 = \frac{5}{256} \mathcal{M}^{-5/3} (\pi f_0)^{-8/3} \text{ time from frequency } f_0 \text{ to coalescence}$$
$$\mathcal{M} \text{ is called the chirp mass}$$
$$\mathcal{M} = \mu^{3/5} M^{2/5} \quad M = m_1 + m_2 \quad \mu = m_1 m_2 / M$$
$$= \eta^{3/5} M \qquad \eta = \mu / M$$

The waveform (III)

• PN developments

»

Known up to order PN2.5 for the amplitude and order PN3.5 for the phase

- Most searches use restricted PN2 waveforms
- Good enough for detection, may cost some accuracy in parameter estimation
- » Spin effects appear from order PN1.5 (spin-orbit) and PN2 (spin-spin)
 - Expected to be negligible for NS, may be significant for BH

PN developments become inaccurate for high mass systems

- » A variety of alternative waveforms exist
 - Padé approximants, EOB (effective one body)...
- » Detection template families can also be considered
 - Phenomenological templates grasping the features of the different models
 - BCV [Ref.7]
 - Provide good detection efficiency, but may suffer from high false alarm probability in real life, due to the inadequacy of signal based vetoes with such waveforms

[Ref.4]

[Ref.5.6]

Matched filtering (I)

» S can also be written in the frequency domain

 $S = \int_{-\infty}^{\infty} \tilde{h}(f) \tilde{Q}^{*}(f) df$

» If the detector output is noise + some signal

h(t) = n(t) + C(t) with $C(t) = \alpha T(t - t_0)$

T(t): normalized expected signal entering detector bandwidth at time t = 0

» The expectation value of the signal S is

$$< S > = \int_{-\infty}^{\infty} < \tilde{h}(f) > \tilde{Q}^*(f)df = \int_{-\infty}^{\infty} \tilde{C}(f)\tilde{Q}^*(f)df$$

Matched filtering (II)

» The noise is defined as:

$$N = S - \langle S \rangle = \int_{-\infty}^{\infty} \tilde{n}(f) \tilde{Q}^*(f) df$$
$$\langle N \rangle = 0 \quad \text{but} \quad \langle N^2 \rangle = \int_0^{\infty} S_h(f) |\tilde{Q}(f)|^2 df$$

where $S_h(f)$ is the one-sided noise power spectrum of the detector: $< \tilde{n}(f)\tilde{n}^*(f') >= \frac{1}{2} S_h(|f|) \delta(f - f')$

» We can define an inner product

$$(A, B) = \int_{-\infty}^{\infty} \tilde{A}(f) \tilde{B}^*(f) S_h(|f|) df$$

and rewrite $\langle S \rangle = (\frac{\tilde{C}}{S_h}, \tilde{Q})$ and $\langle N^2 \rangle = \frac{1}{2} (\tilde{Q}, \tilde{Q})$

» What is the optimal filter Q maximizing $SNR^2 = \frac{\langle S \rangle^2}{\langle N^2 \rangle} = 2 \frac{(\frac{C}{S_h}, \tilde{Q})^2}{(\tilde{Q}, \tilde{Q})}$? use property $(A, B)^2 \leq (A, A)(B, B)$ $(A, B)^2 = (A, A)(B, B)$ only if A proportional to B

Matched filtering (III)

» We choose
$$\tilde{Q}(f) \propto \frac{\tilde{C}(f)}{S_h(|f|)} = \alpha \frac{\tilde{T}(f)}{S_h(|f|)} e^{2\pi i f t_0}$$

» Signal S for arrival time offset t_0 is given by

$$S = \int_{-\infty}^{\infty} \tilde{h}(f) \tilde{Q}^{*}(f) df$$

= $\alpha \int_{0}^{\infty} \underbrace{\frac{\tilde{h}(f)\tilde{T}^{*}(f)}{S_{h}(f)}}_{Fourier \text{ transform of S}} df$

S can be easily obtained for all arrival times t_0 by means of an FFT

» The optimal signal to noise ratio is: $SNR^2 = 2\alpha^2(rac{ ilde{T}}{S_h},rac{ ilde{T}}{S_h})$

If T is normalized such that $(\frac{\tilde{T}}{S_h}, \frac{\tilde{T}}{S_h}) = \frac{1}{2}$ then $\langle N^2 \rangle = 1$ and $SNR^2 = \alpha^2$

Matched filtering in practice (I)

- The FFT allows to extract S for all possible arrival times
 - » Easy to maximize SNR over t_0

• The phase of the chirp signal is unknown

$$h(t) = A \left[h_c(t)\cos\Phi + h_s(t)\sin\Phi\right]$$

cosine and sine phases of the waveform

» The SNR has to be maximized over all possible values of Φ Filter with T_{0° and T_{90° and take quadratic sum

$$S^2 = \sqrt{S_{0^\circ}{}^2 + S_{90^\circ}{}^2}$$

Noise has a χ^2 distribution with 2 degrees of freedom $p(\rho) = \rho e^{-\rho^2/2}$

Signal has a non-central χ^2 distribution Gaussian distribution if signal strong enough

Matched filtering is optimal

- If the noise is Gaussian, the matched filtering provides the optimal statistic
 - » Selecting events by setting a threshold on the SNR $\rho > \rho^*$ guarantees the lowest false alarm probability for a given detection probability

Scanning the parameter space (I)

- » The template T(t) depends on the source parameters: masses, spin
 - It is not possible to maximize analytically the SNR for those intrinsic parameters
 - It is necessary to try a family of templates sampling the parameter space
 - Let us forget about spin and concentrate on the mass parameters
- » Now that we know the optimal filter, let us redefine the inner product as:

$$(a,b) = 4 \Re \int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_h(f)} df$$

With properly normalized templates, the filtered SNR for template u is SNR = (h, u), or rather $\max_{\phi_c, t_c} (h, u(\theta) e^{i(2\pi f t_c + \phi_c)})$

 $\lambda = (\phi_c, t_c, \theta)$ with θ the intrinsic parameters

If data containing signal $u(\lambda_1)$ is filtered with a template with different parameters $u(\lambda_2)$ the fraction of the optimal SNR recovered is given by the ambiguity function $A(\lambda_1, \lambda_2) = (u(\lambda_1), u(\lambda_2))$ maximized over extrinsic parameters, i.e. is given by the match:

 $M(\theta_1, \theta_2) = \max_{\phi_c, t_c} (u(\theta_1), u(\theta_2)e^{i(2\pi f t_c + \phi_c)})$

Scanning the parameter space (II)

From the match, define a metric on the parameter space **>>**

$$g_{ij}(\theta) = \left. -\frac{1}{2} \left. \frac{\partial^2 M(\theta, \Theta)}{\partial \Theta^i \partial \Theta^j} \right|_{\Theta = \theta}$$

In the regime 1-M << 1 the match can be approximated by **»**

$$M(\theta, \theta + \delta\theta) \sim 1 - g_{ij}\delta\theta^i\delta\theta^j$$

Instead of the masses m_1 , m_2 , it is more **»** convenient to use as parameters:

$$\tau_0 = \frac{5}{256} M^{-5/3} (\pi f_0)^{-8/3} \eta^{-1}$$

$$\tau_1 = \frac{5}{192} M^{-1} (\pi f_0)^{-2} \left(\frac{743}{336\eta} + \frac{11}{4} \right)$$

- For matches above ~95%, isomatch **»** contours are ellipses
- In the τ_0 , τ_1 space, the metric components **>>** g_{ii} are constant at 1PN order, and have small variations at higher order. 18

[Ref.8]

Scanning the parameter space (III)

- » Each isomatch contour defines a region of the parameter space which overlaps with the template in the center with a match better than some value M
- » The template in the center can be used to search for signals in that region of the parameter space, at the price of a controlled loss of SNR (< 1 – M)</p>
- » Templates should be placed over the parameter space in order to
 - Achieve coverage of space (no « holes »)
 - Preserve search efficiency: keep number of templates as low as possible

 Things become difficult when other parameters (like spins) need to be taken into account (> 2 dimensions) » To be efficient and safe

 Take into account variations of ellipse size and orientation across the parameter space

[Ref.9]

» For Virgo at design sensitivity, to search the 1-30 M_☉ space with $f_0 = 30$ Hz and a minimal match of 98%, ~ 50000 templates needed 19

Hierarchical methods

- Template based searches can be computationally demanding when the number of templates is large
 - » Depends on the detector bandwidth
 - » Depends on the number of parameters to be scanned

• Hierarchical methods aim at reducing the computing needs

- » Conduct search in several steps, e.g.:
 - 1st step: use a coarser template bank, i.e. a smaller minimal match lower threshold to compensate for reduced signal-template match and keep good detection probability (⇒ increased FAR)
 - 2nd step: for triggers above threshold at 1st step, refine analysis with a higher density template bank
 - Computing gain can be of order ~ 25 [Ref.10]
 - Depends on background!

Hierarchical methods: the multi-band approach (I)

- The computing cost of a matched filter search based on a template bank is due to
 - » The number of templates \leftarrow detector bandwidth
 - » The size of the FFT involved in the matched filtering operation
 - Template duration \leftarrow dominated by the low frequency evolution
 - Sampling frequency
- ⇐ imposed by the high frequency content of the signal
- The analysis can be split in a few bands (two or three)

Hierarchical methods: the multi-band approach (II)

- Build one bank of *real* templates per frequency band
 - » Less templates in each bank
 - » Short templates in high frequency band
 - » Data can be downsampled for the low frequency bands filtering
 - \Rightarrow Less and shorter FFTs

• Filter data with each template bank

 » Complex filtered signal (phase and quadrature) for each template

Hierarchical methods: the multi-band approach (III)

- Build a bank of *virtual* templates on the full frequency band
 - » To each virtual template associate a real template in each frequency band

Add coherently the filtered signals

- » Interpolate low frequency band results
- » Apply time delays and phase offsets between frequency bands
 - Take signal evolution into account
- » Conditional combination
 - If SNR exceeds some threshold in at least one of the bands
 - Built-in hierarchy
- Final threshold is applied on combined signal

Background is not Gaussian!

Coincidences

- Reduce false alarm rate by requiring coincident triggers in several detectors
- Allows to estimate the non-Gaussian background from the data themselves

• Special case of targeted searches

- » e.g. GRB
- » Estimate background "off source"

Instrumental vetoes

- » Check for anomalies in detector behavior, statistically associated with excess triggers
 - Signal based vetoes
 - » Check trigger internal consistency with expected CB signal
 24

Coincidences

• Require coincident triggers in 2 or more detectors

» Check parameter consistency within allowed « windows »

$$\Delta t, \ \Delta \mathcal{M}, \ \Delta \eta$$

- » Smaller coincidence windows \Rightarrow larger reduction of FAR
 - Window size depends on the resolution with which each detector is able to determine those parameters
 - Δt must allow for time of flight between detectors

LIGO Hanford – LIGO Livingston: 10 ms

Virgo – LIGO: 30 ms

Coincidences (II)

Fixed coincidence windows are not optimal

Parameters are correlated

Coincidences (III)

- Use ellipsoids to define coincidences
 - » Builds in correlation and accuracy variation
- Achieves background reduction of a factor 10

[Ref.13]

Not coincident

27

Coincidences (IV)

» Works well for distant sites

- » Co-located detectors (LIGO H1-H2) usually show excess coincident [Ref.14] background with respect to time slides estimates
 - Evidence for correlated noise

 Basic idea: look at how the SNR is distributed across the detector bandwidth and check whether this is consistent with what is expected from a true signal

$$\text{SNR}^2 = 4 \int_0^\infty \frac{|\tilde{h}_S(f)|^2}{S_h(f)} df \sim A \int_0^{f_{max}} \frac{f^{-7/3}}{S_h(f)} df$$

» The matched filter integral can be written as a sum over distinct frequency bands

$$(a,b) = \sum_{j=1}^{p} (a,b)_j$$
 with $(a,b)_j = 4 \Re \int_{\Delta f_j} \frac{\tilde{a}(f)b^*(f)}{S_h(f)} df$

» The frequency intervals are chosen so that for a true signal the SNR is uniformly shared among the frequency bands

$$\Delta f_j$$
 such that $(T,T)_j = \frac{1}{p}(T,T)$ or $\int_{\Delta f_j} \frac{f^{-7/3}}{S_h(f)} df = \frac{1}{p} \int_0^{f_{max}} \frac{f^{-7/3}}{S_h(f)} df$

» The filtered SNR can be written as

$$\rho = \sum_{j=0}^{p} \rho_j \text{ with } \rho_j = (h, Q)_j$$

» A discriminating statistics is built

$$\chi^2 = p \sum_{j=0}^p (\Delta \rho_j)^2 \text{ with } \Delta \rho_j = \rho_j - \frac{\rho}{p}$$
 [Ref.15]

- » If the noise is stationary and Gaussian, the χ^2 has a χ^2 -distribution with p-1 degrees of freedom both for noise and for true signals
- » Excess noise is expected to produce χ^2 values which are outliers with respect to the Gaussian noise/signal distribution

Signal based vetoes: χ^2 test (III)

• χ^2 distribution for true signals in practice

- » Large SNR events tend to show larger χ^2 values than expected from the naive distribution
- » An effect of using template banks
- » The slight mismatch between the signal and the template is enough to evidence differences between the expected SNR frequency distribution and the measured one \Rightarrow high χ^2
- » The cut used to eliminate background must allow some quadratic dependence of the χ^2 on the SNR
- » Apply threshold on variable

$$\xi^2 = \frac{\chi^2}{p(1+\delta^2\rho^2)}$$

Tuning

- » Adjust p, δ and threshold not to reject true signals
- » Cut must be loose enough to be robust with respect to missing features in the templates
 - Spin
 - Ringdown

[Ref.16]

Signal based vetoes: $\chi^2(t)$

Look at $\chi^2(t)$: "r² veto"

coalescence time

»

Use as discriminating variable the time

spent by $\chi^2(t)$ above some threshold in

some time window prior to the measured

[Ref.16]

Signal based vetoes: drawbacks

• Signal based vetoes are powerful but

- » They are usually computationally expensive
- » They do not provide any feedback on the detector
- » They cannot be applied when phenomenological detection templates are used

Instrumental vetoes (I)

- Identify anomalies in the detector behavior/environment statistically coincident with CB triggers
 - » Ideally, understand origin of bad behavior and fix it
 - » Help clean up the background by eliminating the corresponding triggers

Instrumental vetoes should be

- » Efficient: eliminate false triggers, especially triggers with high SNR
- » Relevant: they should be often enough associated with triggers (use percentage)
- » Cheap: they should not eliminate a large fraction of the data (dead time)
- » Safe: they should not eliminate true signals
 - safety checked with hardware injections

 ← Hardware injections are simulated signals physically in the interferometer by acting on the mirrors, to check the analysis pipeline as a whole, from the reconstruction of the h(t) signal to the trigger production, and to check the safety of vetoes.

Instrumental vetoes (II)

- Vetoes are categorized according to severity, statistical correlation and dead time
 - » Category 1
 - Data not suitable for being analyzed
 - e.g.: detector not at operating point; missing data...
 - » Category 2
 - Well understood instrumental problems
 - Strong statistical correlation
 - Usually low dead time
 - e.g.: overflow in ADC digitizing photodiode signals
 - » Category 3
 - Suspected instrumental problems
 - Positive statistical correlation, but not well understood
 - Dead time can be large
 - This category also includes ad-hoc vetoes based on auxiliary channels
 - e.g.: high seismic activity, strong wind
 - » Category 4
 - Poorly understood, weak but positive correlation
 - May veto whole noisy epochs

Instrumental vetoes (III)

- Vetoes based on data quality flags pointing out understood detector / environment bad behavior
- Vetoes based on auxiliary channels showing glitch correlation with GW channel

Ad-hoc vetoes

- » Use photodiode signals to veto triggers caused by dust particles passing through beam
 - Keep veto safe!

Improving the detection statistic

• SNR

Combining all this: the LIGO pipeline

Network analysis (I)

- Several detectors are a tool to cope with excess noise, but they also allow to extract more science
- With a single interferometer
 - » Can in principle measure masses, spins, and effective distance to compact binary coalescence.
- With two geographically separated interferometers
 - » Can in principle locate source on sky annulus via time delay
 - Can in principle also measure inclination, polarization angle as function of sky location
- With three geographically separated interferometers
 - » Can in principle measure the sky position and all other parameters of the binary

Network analysis (II)

- Differently located and oriented detectors have different sensitivities for a given source direction
 - » e.g.: sensitivity for a circularly polarized GW

Coherent analysis (I)

- If the noise is stationary and Gaussian, the optimal strategy is to perform a coherent search
 - » Treat each detector signal as a component of a global detector signal, and perform matched filter with global templates

Correlators at detector i for Time delay $\tau_i(\theta, \phi)$ the two templates in quadrature depending on source direction are $C_0^i(t)$ and $C_{\frac{\pi}{2}}^i(t)$ $\operatorname{SNR}^2_{\operatorname{network}} = \sum_{i,j} p_{i,j}(\theta,\phi) \left[C_0^i(t-\tau_i(\theta,\phi)) \ C_0^j(t-\tau_j(\theta,\phi)) + (0 \to \frac{\pi}{2}) \right]$ Weighting matrix, depending on the location/orientation of the detectors, and on their relative sensitivity $SNR^{2} = \kappa^{2} \left\{ \frac{1}{2} \sum_{i} |E_{i}(\theta, \phi, \iota, \psi)|^{2} \right\}$ Extended beam patterns, Intrinsic source strength depending on detector location, orientation, sensitivity 41

Coherent analysis (II)

- Performing network matched filtering is computationally expensive
 - » A larger parameter space should be scanned

[Ref.19]

- Arrival time, source mass parameters, source direction...
- Non-Gaussian noise prevents from relying only on a coherent search anyway
- Used at follow-up level

Setting upper limits

- In the absence of a detection, set upper limits on the coalescence rate
 - » Use loudest event statistic in a Bayesian approach

- [Ref.22]
- » Probability that all signal events have SNR below some value ρ :

 $P(\rho|\mu) = e^{-\mu\epsilon(\rho)}$ (signal Poisson distributed) $\mu = R T$ with R the event rate and T the observation time $\epsilon(\rho)$: signal detection efficiency with SNR threshold ρ

» Neglecting the background, posterior probability distribution for μ :

 $P(\mu < \mu_p | \rho_{max}) = \mathcal{N}^{-1} \int_0^{\mu_p} d\mu \ p(\mu) \ p(\rho_{max} | \mu) \text{ with } p(\rho | \mu) = dP(\rho | \mu) / d\rho$ Solve $p = P(\mu < \mu_p | \rho_{max})$ for μ_p to get 100p% CL upper limit

With uniform prior $p(\mu) R_{90\%} = \frac{3.890}{T\epsilon(\rho_{max})}$

- » The background can be taken into account to get better upper limit
- Best current upper limit for BNS (LIGO S5)
 - » $R_{90\%} = 1.4 \ 10^{-2} \ yr^{-1} \ L_{10}^{-1}$ [Ref.16]

Low mass search (I)

- Search for binary systems consisting of neutron stars and/or black holes, with total mass between 2-35 M_{\odot} and a minimum component mass of 1 M_{\odot}
- 2nd order post-Newtonian templates

Low mass search (II)

- Compare rate upper limits to astrophysical expected rates
- Best current results
 - » BNS rate 90% confidence = $1.4 \times 10^{-2} L_{10}^{-1} \text{ yr}^{-1}$
 - » BBH rate 90% confidence = $7.3 \times 10^{-4} L_{10}^{-1} \text{ yr}^{-1}$ [Ref.16]
 - » NSBH rate 90% confidence = $3.6 \times 10^{-3} L_{10}^{-1} \text{ yr}^{-1}$
- Astrophysical optimistic rates
 - » BNS rate = 5 x $10^{-4} L_{10}^{-1} yr^{-1}$
 - » BBH rate = 6 x $10^{-5} L_{10}^{-1} yr^{-1}$
 - » NSBH rate = 6 x $10^{-5} L_{10}^{-1} yr^{-1}$
- Astrophysical best estimate rates
 - » BNS rate = 5 x $10^{-5} L_{10}^{-1} yr^{-1}$
 - » BBH rate = 4 x $10^{-7} L_{10}^{-1} yr^{-1}$
 - » NSBH rate = 2 x $10^{-6} L_{10}^{-1} yr^{-1}$

~1-2 orders of magnitude

~3 orders of magnitude

High mass search (I)

20

40

60

80

- Inspiral-Merger-Ringdown (IMR) templates to model the entire in-band gravitational wave signal
 - » High mass waveforms can be very short (~100 ms). Merger and ringdown are a large part of the in band signal.
 - » Effective-One-Body (EOB) model tuned to Numerical Relativity (NR) simulations = EOBNR waveforms

Calculated with analytic noise curve

Total Mass (M_{Sun})

100

• Could detect high mass binaries out to several hundred Mpc

120

140

160

180

200

High mass search (II)

- EOBNR: complete analytic IMR waveforms
- EOB inspiral-plunge waveform computed up to the light ring
- Merger-ringdown waveform: superposition of quasi-normal modes smoothly attached near the light ring
- Model calibrated to NR waveforms with mass ratios 1:1 – 4:1

Time Domain EOBNR Waveforms (30+30 Ms BBH)

GRB search (I)

- 22 short GRBs during S5-VSR1 with at least two detectors taking good data
- Known time and sky location
 - » Lower thresholds can be used to dig deeper into the detector noise
- On-source and Off-source
 - » GW triggers associated with GRB within [-5, +1) s of the reported GRB time

051114	070209
051210	070429B
05 2	070512
060121	070707
060313	070714
060427B	070714B
060429	070724
061006	070729
061201	070809
06 2 7	070810B
070201	070923

time

» Background estimated from ~40 minutes of nearby data

On-source trial

FI)

GRB search (II)

• Example from already published GRB 070201

- » Error box intersecting M31
- » Merger in Andromeda?
- » No plausible GW signal found
- $\,\,$ ^ 1 M_{\odot} < m_1 < 3 M_{\odot} and 1 M_{\odot} < m_2 < 40 M_{\odot} excluded at 99% confidence

[Ref.17]

- Similar exclusion plots derived for all analyzed S5-VSR1 short GRBs
- Population statement combining results from all GRBs also derived

Ringdown search

References (I)

[1] B.Schutz, Nature 323 (1986)

- [2] V.Kalogera et al., Astrophys. J 601 (2004) erratum-ibid. 604 (2004)
- [3] R. O'Shaughnessy et al., Astrophys. J 672 (2008)
- [4] For PN formalism, see L.Blanchet's lesson and references therein
- [5] T.Damour et al., Phys. Rev. D 57 (1998)
- [6] A.Buonanno et al., Phys. Rev. D 59 (1999)
 - A.Buonanno et al., Phys. Rev. D 62 (2000)
- [7] A.Buonanno et al., Phys. Rev. D 67 (2003)
 - A.Buonanno et al., Phys. Rev. D 70 (2004)
 - A.Buonanno et al., Phys. Rev. D 72 (2005)
- [8] B.Owen, Phys.rev.D 53 (1996)
- B.Owen et al., Phys. Rev. D 60 (1999) [9] D.Buskulic et al., Class. Quant. Grav. 22 (2005) [10] S.D.Mohanty, Phys. Rev. D 57 (1997) [11] F.Marion et al., Moriond Proceedings (2003)
- [12] K.G.Arun et al., Phys. Rev. D 71 (2005)

References (II)

[13] C.Robinson et al., GWDAW 11 (2006)

- [14] T.Cokelaer et al., LSC, GWDAW 11 (2006)
- [15] B.Allen, Phys. Rev. D 71 (2005)

[16] http://arxiv.org/abs/0905.3710 (2009)

LSC, Tuning matched filter searches for compact binary systems (2007) [17] LIGO Scientific Collaboration and K. Hurley. Astrophys. J 681(2) (2008) http://arxiv.org/abs/1001.0165 [18] P.Brady et al., LSC, GWDAW 10 (2005)

[19] A.Pai et al., Phys. Rev. D 64 (2004)

[20] LIGO Scientific Collaboration Phys. Rev. D80 (2009)

[21] C.Van Den Broeck et al., gr-qc/0610126v2 (2007)

[22] P.Brady et al., Class. Quantum Grav. 21 (2004)