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Outline

 A reminder about what we are looking for
» The source, the waveform

 The basic search technique
» Matched filtering

 Exploring the parameter space

 Real life: dealing with background
» Coincidences, vetoes

 Network analysis

 A brief review of LIGO-Virgo CBC searches
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The target sources

 Final evolution stage of compact binary systems
» Systems like PSR1913+16 reaching coalescence of the two stars

 System may involve
» Neutron stars

» Black holes

– For ground based detectors, stellar mass black holes

– Advanced detectors: up to intermediate mass black holes

– Super-massive BH: lower frequency, space based detectors
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What makes CB promising sources?

 We know “a lot” about the sources
» Such systems do exist

– Although rates are uncertain and low…

» The emitted waveform is known with some accuracy

 A nice laboratory to study General Relativity
» Confront waveform prediction with observation

» Study GR at work in the strong field regime

 A nice tool for astrophysics and cosmology
» Parameters of the system can be extracted

» CB are standard candles: source distance can be measured

– Opens the possibility of measuring the Hubble constant

» Are short gamma ray bursts associated to coalescing binaries?

[Ref.1]
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Rare events: BNS systems

 Galactic rate
» CB rate in the Galaxy inferred from known systems, expected to reach 

coalescence in a time less than the age of the Universe

» Only 3 such systems known today (including PSR 1913+16)

» Estimate dominated by most recently discovered system (PSR J0737+3039)

» Estimate depends on the modeled Galactic distribution of neutron stars

» R ~ 1 – 1000 MWEG-1 Myr-1, realistic estimate R ~100 MWEG-1 Myr-1

 Detected rate
» Rate of detected events depends on number of galaxies probed by the detector

» Related to detector horizon distance (distance at which an optimally located and 

oriented source would produce a SNR of 8)

– For initial detectors (Dhorizon ~ 30 Mpc)

N ~ 2 .10-4 – 2 .10-1 yr-1, most probable N ~ 1 / (50 yr)

– For advanced detectors (assuming 15 times improved horizon distance)

most probable N ~ 40 / yr

[Ref.2]
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Rare events: BH-NS & BH-BH

 No known system involving a black hole
» Rely on stellar evolution models to predict rate

» Galactic coalescence rate smaller for BH-NS or BH-BH systems than 

for NS-NS systems

» Systems with BH can be seen up to larger distances

Overall detected rate larger ?? 

» Initial detectors

NBHBH ~  7 . 10-3 yr-1

NNSBH ~  4 . 10-3 yr-1

» Advanced detectors

NBHBH ~  20 yr-1

NNSBH ~  10 yr-1

Large uncertainties on 

those numbers!!

[Ref.3]



 Inspiral phase
» The realm of post-Newtonian expansions

» Accurately known chirp, at least for those 

light enough systems well described by 

adiabatic models

 Plunge, merger and ringdown
» The realm of numerical relativity

» Duration << 1 s

» Not crucial for detection unless it is the only 

part of the signal within the bandwidth of the 

detector
7

Phases of the evolution
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The waveform (I)

» Usual searches use restricted waveforms, namely waveforms where all terms with k 

2 are neglected: other harmonics of the orbital frequency are ignored

» OK from the detection point of view, at least for initial detectors

» May reduce the accuracy of parameter estimation, especially for high mass systems

[Ref.21]
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The waveform (II)

(distance of an optimally located and oriented source that would produce 

the same signal strength)

At Newtonian order:

The restricted waveform at the detector can be written:
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The waveform (III)

 PN developments
» Known up to order PN2.5 for the amplitude and order PN3.5 for the phase

– Most searches use restricted PN2 waveforms

– Good enough for detection, may cost some accuracy in parameter estimation

» Spin effects appear from order PN1.5 (spin-orbit) and PN2 (spin-spin)

– Expected to be negligible for NS, may be significant for BH

 PN developments become inaccurate for high mass systems
» A variety of alternative waveforms exist

– Padé approximants, EOB (effective one body)…

» Detection template families can also be considered

– Phenomenological templates grasping the features of the different models

 BCV

– Provide good detection efficiency, but may suffer from high false alarm probability 

in real life, due to the inadequacy of signal based vetoes with such waveforms

[Ref.4]

[Ref.5, 6]

[Ref.7]
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Matched filtering (I)

» Construct a filtered signal

» S can also be written in the frequency domain

» If the detector output is noise + some signal

» The expectation value of the signal S is 

detector output filter chosen to optimize the 

signal to noise ratio (SNR)
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Matched filtering (II)

» The noise is defined as:

where             is the one-sided noise power spectrum of the detector:

» We can define an inner product

and rewrite

» What is the optimal filter Q maximizing

use property 
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Matched filtering (III)

» We choose

» Signal S for arrival time offset t0 is given by

S can be easily obtained for all arrival times t0 by means of an FFT

» The optimal signal to noise ratio is:

Fourier transform of S

S distribution for noise

S distribution for signal with = 5



14

Matched filtering in practice (I)

 The FFT allows to extract S for all possible arrival times
» Easy to maximize SNR over t0

/
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Matched filtering in practice (II)

 The phase of the chirp signal is unknown

» The SNR has to be maximized over all possible values of 

cosine and sine phases of the waveform
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Matched filtering is optimal

 If the noise is Gaussian, the matched filtering provides 

the optimal statistic
» Selecting events by setting a threshold on the SNR > * 

guarantees the lowest false alarm probability for a given detection 

probability

* *

Detection probability for 

signal with SNR S
False alarm probability
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Scanning the parameter space (I)

» The template T(t) depends on the source parameters: masses, spin

– It is not possible to maximize analytically the SNR for those intrinsic parameters

– It is necessary to try a family of templates sampling the parameter space

– Let us forget about spin and concentrate on the mass parameters

» Now that we know the optimal filter, let us redefine the inner product as: 
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Scanning the parameter space (II)

» From the match, define a metric on the parameter space

» In the regime 1-M << 1 the match can be approximated by

» Instead of the masses m1, m2, it is more 

convenient to use as parameters:

» For matches above ~95%, isomatch

contours are ellipses

» In the 0, 1 space, the metric components 

gij are constant at 1PN order, and have 

small variations at higher order. 

[Ref.8]
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Scanning the parameter space (III)

» Each isomatch contour defines a region of the parameter space 

which overlaps with the template in the center with a match better 

than some value M

» The template in the center can be used to search for signals in that 

region of the parameter space, at the price of a controlled loss of 

SNR (< 1 – M )

» Templates should be placed over the parameter space in order to

– Achieve coverage of space (no « holes »)

– Preserve search efficiency: keep number of templates as low as possible

» To be efficient and safe

– Take into account variations of 

ellipse size and orientation 

across the parameter space

» For Virgo at design sensitivity, 

to search the 1-30 M


space 

with f0 = 30 Hz and a minimal 

match of 98%, ~ 50000 

templates needed

[Ref.9]

» Things become difficult when other parameters (like 

spins) need to be taken into account (> 2 dimensions) 
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Hierarchical methods

 Template based searches can be computationally 

demanding when the number of templates is large
» Depends on the detector bandwidth

» Depends on the number of parameters to be scanned

 Hierarchical methods aim at reducing the computing needs
» Conduct search in several steps, e.g.:

– 1st step: use a coarser template bank, i.e. a smaller minimal match

lower threshold to compensate for reduced signal-template match and keep 

good detection probability ( increased FAR)

– 2nd step: for triggers above threshold at 1st step, refine analysis with a higher 

density template bank

– Computing gain can be of order ~ 25

 Depends on background! 

[Ref.10]
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Hierarchical methods: the multi-band approach (I)

 The computing cost of a matched filter search based on a 

template bank is due to
» The number of templates detector bandwidth

» The size of the FFT involved in the matched filtering operation

– Template duration dominated by the low frequency evolution

– Sampling frequency imposed by the high frequency content of the signal

 The analysis can be split in a few bands (two or three)

samplingduration

[Ref.11]
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 Build one bank of real templates 

per frequency band
» Less templates in each bank

» Short templates in high frequency band

» Data can be downsampled for the low 

frequency bands filtering

Less and shorter FFTs

 Filter data with each template bank
» Complex filtered signal (phase and 

quadrature) for each template

M1

M2

M2

M2

M2

M1

M1

M1

Hierarchical methods: the multi-band approach (II)
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Hierarchical methods: the multi-band approach (III)

 Build a bank of virtual templates on 
the full frequency band
» To each virtual template associate a real 

template in each frequency band 

 Add coherently the filtered signals
» Interpolate low frequency band results

» Apply time delays and phase offsets 
between frequency bands

– Take signal evolution into account

» Conditional combination

– If SNR exceeds some threshold in at least 
one of the bands

– Built-in hierarchy

 Final threshold is applied on 
combined signal

REAL

REAL

REAL

VIRTUAL
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Background is not Gaussian!

An example on quiet

Virgo data (WSR7)

» Basic data quality cuts 

already applied

 Coincidences 
» Reduce false alarm rate by 

requiring coincident triggers 

in several detectors

» Allows to estimate the non-

Gaussian background from 

the data themselves

 Instrumental vetoes 
» Check for anomalies in detector 

behavior, statistically associated 

with excess triggers

 Signal based vetoes
» Check trigger internal 

consistency with expected 

CB signal

An example 

on LIGO data

 Special case of targeted searches

» e.g. GRB

» Estimate background “off source”
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Coincidences

 Require coincident triggers in 2 or more detectors
» Check parameter consistency within allowed « windows »

» Smaller coincidence windows larger reduction of FAR

– Window size depends on the resolution with which each detector is 

able to determine those parameters

– must allow for time of flight between detectors

LIGO Hanford – LIGO Livingston: 10 ms

Virgo – LIGO: 30 ms

Timing precision: 

typically a few ms

Chirp mass very 

well determined

less precisely 

determined
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Coincidences (II)

 Fixed coincidence windows are not optimal

Parameters are correlated
Errors on parameters vary 

across the parameter space

[Ref.12]
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Coincidences (III)

 Use ellipsoids to define coincidences
» Builds in correlation and accuracy variation

 Achieves background reduction of a 

factor 10

[Ref.13]
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Coincidences (IV)

 Allow to estimate background from the data using time shifts

» Works well for distant sites

» Co-located detectors (LIGO H1-H2) usually show excess coincident 

background with respect to time slides estimates

– Evidence for correlated noise

[Ref.14]

IFO 1

IFO 2

Foreground trigger Time slide trigger TIME
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Signal based vetoes: 2 test (I)

 Basic idea: look at how the SNR is distributed across 

the detector bandwidth and check whether this is 

consistent with what is expected from a true signal
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Signal based vetoes: 2 test (II)

» The matched filter integral can be written as a sum over distinct frequency bands

» The frequency intervals are chosen so that for a true signal the SNR is uniformly 

shared among the frequency bands

» The filtered SNR can be written as

» A discriminating statistics is built

» If the noise is stationary and Gaussian, the 2 has a 2-distribution with p-1 

degrees of freedom both for noise and for true signals

» Excess noise is expected to produce 2 values which are outliers with respect to 

the Gaussian noise/signal distribution

[Ref.15]
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Signal based vetoes: 2 test (III)


2 distribution for true signals in practice
» Large SNR events tend to show larger 2 values 

than expected from the naive distribution

» An effect of using template banks

» The slight mismatch between the signal and the 
template is enough to evidence differences 
between the expected SNR frequency distribution 
and the measured one high 2

» The cut used to eliminate background must allow 
some quadratic dependence of the 2 on the SNR

» Apply threshold on variable

 Tuning
» Adjust p, and threshold not to reject true signals

» Cut must be loose enough to be robust with 
respect to missing features in the templates

– Spin

– Ringdown
[Ref.16]
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Signal based vetoes: 2(t)

 Look at 2(t): “r2 veto”
» Use as discriminating variable the time 

spent by 2(t)  above some threshold in 

some time window prior to the measured 

coalescence time

[Ref.16]
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Signal based vetoes: drawbacks

 Signal based vetoes are powerful but
» They are usually computationally expensive

» They do not provide any feedback on the detector

» They cannot be applied when phenomenological detection 

templates are used 
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Instrumental vetoes (I)

 Identify anomalies in the detector behavior/environment statistically 

coincident with CB triggers

» Ideally, understand origin of bad behavior and fix it

» Help clean up the background by eliminating the corresponding  triggers

 Instrumental vetoes should be

» Efficient: eliminate false triggers, especially triggers with high SNR

» Relevant: they should be often enough associated with triggers (use percentage)

» Cheap: they should not eliminate a large fraction of the data (dead time)

» Safe: they should not eliminate true signals 

– safety checked with hardware injections 

Hardware injections are simulated signals physically in the interferometer by acting on the 

mirrors, to check the analysis pipeline as a whole, from the reconstruction of the h(t) signal to 

the trigger production, and to check the safety of vetoes.
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Instrumental vetoes (II)

 Vetoes are categorized according to severity, statistical 
correlation and dead time
» Category 1

– Data not suitable for being analyzed

– e.g.: detector not at operating point; missing data…

» Category 2

– Well understood instrumental problems

– Strong statistical correlation

– Usually low dead time

– e.g.: overflow in ADC digitizing photodiode signals

» Category 3

– Suspected instrumental problems

– Positive statistical correlation, but not well understood

– Dead time can be large

– This category also includes ad-hoc vetoes based on auxiliary channels

– e.g.: high seismic activity, strong wind

» Category 4

– Poorly understood, weak but positive correlation

– May veto whole noisy epochs
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Instrumental vetoes (III)

 Vetoes based on auxiliary channels 

showing glitch correlation with GW 

channel

 Ad-hoc vetoes
» Use photodiode signals to veto triggers caused 

by dust particles passing through beam

– Keep veto safe!

 Vetoes based on data quality flags 
pointing out understood detector / 
environment bad behavior



 SNR

 Effective SNR
» Give less value to triggers with higher 2

 Inverse false alarm rate (IFAR)
» Not all portions of parameter space bring the same background

» Rate triggers by false alarm rate

 Likelihood
» IFAR guarantees that all categories will bring the same background

» But all categories are not equally sensitive to true signals

– Weight IFAR with probability to observe louder signal

High mass 

templates

Low mass 

templates

Combined Effective SNR

C
u
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N
u
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b
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Improving the detection statistic

All triggers 2 < M < 8

8 < M < 17 17 < M < 35
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Combining all this: the LIGO pipeline

[Ref.18]
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Network analysis (I)

 Several detectors are a tool to cope with excess 

noise, but they also allow to extract more science

 With a single interferometer
» Can in principle measure masses, spins, and effective distance to 

compact binary coalescence.

 With two geographically separated interferometers
» Can in principle locate source on sky annulus via time delay 

» Can in principle also measure inclination, polarization angle as 

function of sky location

 With three geographically separated interferometers
» Can in principle measure the  sky position and all other parameters 

of the binary
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Network analysis (II)

 Differently located and 

oriented detectors have 

different sensitivities for 

a given source direction
» e.g.: sensitivity for a 

circularly polarized GW
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Coherent analysis (I)

 If the noise is stationary and Gaussian, the optimal 

strategy is to perform a coherent search
» Treat each detector signal as a component of a global detector signal, 

and perform matched filter with global templates

Weighting matrix, depending on the 

location/orientation of the detectors, and on 

their relative sensitivity

Extended beam patterns, 

depending on detector location, 

orientation, sensitivity

Intrinsic source strength
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Coherent analysis (II)

 Performing network matched filtering is computationally 

expensive
» A larger parameter space should be scanned

– Arrival time, source mass parameters, source direction…

 Non-Gaussian noise prevents from relying only on a 

coherent search anyway

 Used at follow-up level

[Ref.19]
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Setting upper limits

 In the absence of a detection, set upper limits on the 

coalescence rate
» Use loudest event statistic in a Bayesian approach

» Probability that all signal events have SNR below some value :

» Neglecting the background, posterior probability distribution for :

» The background can be taken into account to get better upper limit

 Best current upper limit for BNS (LIGO S5)
» R90% = 1.4 10-2 yr-1 L10

-1 

[Ref.22]

[Ref.16]
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Low mass search (I)

 Search for binary systems consisting 

of neutron stars and/or black holes, 

with total mass between 2-35 M


and 

a minimum component mass of 1 M


 2nd order post-Newtonian templates

BNS

BBH

NSBH
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Low mass search (II)

 Mass dependent upper 

limits can be derived

 Results from successive 

searches can be combined
 S5 12-18 months combined with S5 

first year

» UL a factor 3 lower than S5 1st year

– Less data, but more sensitive
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Low mass search (III)

 Compare rate upper limits to astrophysical expected rates

 Best current results
» BNS rate 90% confidence    = 1.4 x 10-2 L10

-1 yr-1

» BBH rate 90% confidence    = 7.3 x 10-4 L10
-1 yr-1

» NSBH rate 90% confidence  = 3.6 x 10-3 L10
-1 yr-1

 Astrophysical optimistic rates
» BNS rate   = 5 x 10-4 L10

-1 yr-1

» BBH rate   = 6 x 10-5 L10
-1 yr-1

» NSBH rate = 6 x 10-5 L10
-1 yr-1

 Astrophysical best estimate rates
» BNS rate   = 5 x 10-5 L10

-1 yr-1

» BBH rate   = 4 x 10-7 L10
-1 yr-1

» NSBH rate = 2 x 10-6 L10
-1 yr-1

~1-2 orders of magnitude

~3 orders of magnitude

[Ref.16]
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High mass search (I)

 Inspiral-Merger-Ringdown (IMR) 

templates to model the entire in-band 

gravitational wave signal

» High mass waveforms can be very short 

(~100 ms). Merger and ringdown are a large 

part of the in band signal.

» Effective-One-Body (EOB) model tuned to 

Numerical Relativity (NR) simulations = 

EOBNR waveforms

 Could detect high mass binaries 

out to several hundred Mpc
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High mass search (II)

 EOBNR: complete analytic IMR 

waveforms

 EOB inspiral-plunge waveform 

computed up to the light ring

 Merger-ringdown waveform: 

superposition of quasi-normal 

modes smoothly attached near the 

light ring

 Model calibrated to NR waveforms 

with mass ratios 1:1 – 4:1
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GRB search (I)

 22 short GRBs during S5-VSR1 

with at least two detectors taking 

good data

 Known time and sky location
» Lower thresholds can be used to dig 

deeper into the detector noise

 On-source and Off-source
» GW triggers associated with GRB within 

[–5, +1) s of the reported GRB time

» Background estimated from ~40 minutes 

of nearby data 
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GRB search (II)

 Example from already published GRB 070201
» Error box intersecting M31

» Merger in Andromeda?

» No plausible GW signal found

» 1 M


< m1 < 3 M


and 1 M


< m2 < 40 M


excluded at 99% confidence

 Similar exclusion plots derived for all analyzed  S5-VSR1 short GRBs

 Population statement combining results from all GRBs also derived

[Ref.17]
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Ringdown search

 S4 upper limit
» Rate of ringdowns from black holes

» R90% = 1.6 x 10-3 L10
-1 yr-1                       

in mass range 85-390 M


 Late stage of coalescence
» Perturbed black hole returning to 

equilibrium through emission of 

ringdown GW signal

» Superposition of quasi-normal modes

» Waveform determined by mass M and 

spin                     of black hole

[Ref.20]
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