Data Analysis: Coalescing Binaries (a brief introduction, mostly qualitative)

Frédérique MARION **GD** VESF Data Analysis School February 11th, 2009

- A reminder about what we are looking for
	- » The source, the waveform
- The basic search technique
	- » Matched filtering
- Exploring the parameter space
- Real life: dealing with background
	- » Coincidences, vetoes
- Network analysis
- A brief review of LIGO-Virgo CBC searches

The target sources

Final evolution stage of compact binary systems

» Systems like PSR1913+16 reaching coalescence of the two stars

System may involve

» Neutron stars

$$
f_{\rm ISCO} = \frac{2.8M_{\odot}}{M} 1600 \text{ Hz}
$$

- » Black holes
	- For ground based detectors, stellar mass black holes
	- Advanced detectors: up to intermediate mass black holes
	- Super-massive BH: lower frequency, space based detectors

What makes CB promising sources?

• We know "a lot" about the sources

- » Such systems do exist
	- Although rates are uncertain and low…
- » The emitted waveform is known with some accuracy
- A nice laboratory to study General Relativity
	- » Confront waveform prediction with observation
	- » Study GR at work in the strong field regime
- A nice tool for astrophysics and cosmology
	- » Parameters of the system can be extracted
	- » CB are standard candles: source distance can be measured
		- Opens the possibility of measuring the Hubble constant
	- » Are short gamma ray bursts associated to coalescing binaries?

[Ref.1]

Rare events: BNS systems

Galactic rate

- » CB rate in the Galaxy inferred from known systems, expected to reach coalescence in a time less than the age of the Universe
- » Only 3 such systems known today (including PSR 1913+16)
- » Estimate dominated by most recently discovered system (PSR J0737+3039)
- » Estimate depends on the modeled Galactic distribution of neutron stars
- $\text{R} \sim 1 1000 \text{ MWEG}^{-1} \text{ Myr}^{-1}$, realistic estimate R ~100 MWEG⁻¹ Myr⁻¹

Detected rate

» Rate of detected events depends on number of galaxies probed by the detector

- » Related to detector horizon distance (distance at which an optimally located and oriented source would produce a SNR of 8)
	- For initial detectors ($D_{horizon} \sim 30$ Mpc) $N \sim 2.10^{-4} - 2.10^{-1}$ yr⁻¹, most probable $N \sim 1$ / (50 yr)
	- For advanced detectors (assuming 15 times improved horizon distance) most probable $N \sim 40$ / yr

[Ref.2]

Rare events: BH-NS & BH-BH

No known system involving a black hole

- » Rely on stellar evolution models to predict rate
- » Galactic coalescence rate smaller for BH-NS or BH-BH systems than for NS-NS systems
- » Systems with BH can be seen up to larger distances
- \Rightarrow Overall detected rate larger ??
- » Initial detectors

 $N_{\text{BHRH}} \sim 7 \cdot 10^{-3} \text{ yr}^{-1}$ N_{NSBH} ~ 4.10-3 yr-1

» Advanced detectors

```
N_{BHBH} ~ 20 yr<sup>-1</sup>
N_{NSBH} ~ 10 yr<sup>-1</sup>
```
Large uncertainties on those numbers!!

[Ref.3]

Phases of the evolution

Inspiral phase

- » The realm of post-Newtonian expansions
- » Accurately known chirp, at least for those light enough systems well described by adiabatic models

duration $\sim 34 \left(\frac{\mathcal{M}}{M_{\odot}} \right)^{-5/3} \left(\frac{f_0}{40 \text{ Hz}} \right)^{-8/3} \text{ s}$

Plunge, merger and ringdown

- » The realm of numerical relativity
- » Duration << 1 s
- » Not crucial for detection unless it is the only part of the signal within the bandwidth of the detector $\frac{1}{30}$

The waveform (I)

 $h(t) = F_{+}(\theta, \phi, \psi) h_{+}(t) + F_{\times}(\theta, \phi, \psi) h_{\times}(t)$ source F_+ and F_{\times} : detector response functions depend on sky location (θ, ϕ) and polarization angle ψ $F_+ = -\frac{1}{2}(1+\cos^2\theta)\cos 2\phi\cos 2\psi - \cos\theta\sin 2\phi\sin 2\psi$ $F_{\times} = \frac{1}{2}(1 + \cos^2 \theta) \cos 2\phi \sin 2\psi - \cos \theta \sin 2\phi \cos 2\psi$ h_{+} and h_{\times} are obtained from post-Newtonian developments Up to 2.5PN order in amplitude: $h(t) = \sum_{k=1}^{N} \sum_{m=0}^{5} A_{k,m/2}(t) \cos(k \varphi(t) + \varphi_{k,m/2})$ with $A_{k,m/2}(t) \propto (2\pi M f(t))^{(m+2)/3}$

- » Usual searches use restricted waveforms, namely waveforms where all terms with k \neq 2 are neglected: other harmonics of the orbital frequency are ignored
- » OK from the detection point of view, at least for initial detectors
- » May reduce the accuracy of parameter estimation, especially for high mass systems

[Ref.21]

8

The waveform (II)

The restricted waveform at the detector can be written:

$$
h(t) = \frac{1 \text{ Mpc}}{D_{\text{eff}}} A(t) \cos(\varphi(t) - \varphi_0)
$$

with
$$
D_{\text{eff}} = \frac{D}{\sqrt{F_+^2 (1 + \cos^2 t)^2 / 4 + F_\times^2 \cos^2 t}}
$$
 the effective distance

(distance of an optimally located and oriented source that would produce the same signal strength)

$$
A(t) = A f(t)^{2/3}
$$

At Newtonian order:

$$
f(t) = f_0 \ (1 - \frac{t}{\tau_0})^{-3/8} \qquad \varphi(t) = \frac{16\pi f_0 \tau_0}{5} \left[1 - \left(\frac{f}{f_0}\right)^{-5/3} \right]
$$

$$
\tau_0 = \frac{5}{256} \mathcal{M}^{-5/3} (\pi f_0)^{-8/3} \text{ time from frequency } f_0 \text{ to coalescence}
$$

$$
\mathcal{M} \text{ is called the chirp mass}
$$

$$
\mathcal{M} = \mu^{3/5} M^{2/5} \quad M = m_1 + m_2 \quad \mu = m_1 m_2 / M
$$

$$
= \eta^{3/5} M \qquad \eta = \mu / M
$$

The waveform (III)

PN developments

- » Known up to order PN2.5 for the amplitude and order PN3.5 for the phase
	- Most searches use restricted PN2 waveforms
	- Good enough for detection, may cost some accuracy in parameter estimation
- » Spin effects appear from order PN1.5 (spin-orbit) and PN2 (spin-spin)
	- Expected to be negligible for NS, may be significant for BH

PN developments become inaccurate for high mass systems

- » A variety of alternative waveforms exist
	- Padé approximants, EOB (effective one body)…
- » Detection template families can also be considered
	- Phenomenological templates grasping the features of the different models
		- BCV [Ref.7]
	- Provide good detection efficiency, but may suffer from high false alarm probability in real life, due to the inadequacy of signal based vetoes with such waveforms

[Ref.4]

[Ref.5, 6]

Matched filtering (I)

» *S* can also be written in the frequency domain

 $S = \int_{-\infty}^{\infty} \tilde{h}(f) \tilde{Q}^*(f) df$

 λ If the detector output is noise + some signal

 $h(t) = n(t) + C(t)$ with $C(t) = \alpha T(t - t_0)$

 $T(t)$: normalized expected signal entering detector bandwidth at time $t=0$

» The expectation value of the signal *S* is

$$
~~= \int_{-\infty}^{\infty} \langle \tilde{h}(f) \rangle \tilde{Q}^*(f) df = \int_{-\infty}^{\infty} \tilde{C}(f) \tilde{Q}^*(f) df~~
$$

Matched filtering (II)

» The noise is defined as:

$$
N = S - \langle S \rangle = \int_{-\infty}^{\infty} \tilde{n}(f)\tilde{Q}^*(f)df
$$

< N > = 0 but $\langle N^2 \rangle = \int_0^{\infty} S_h(f)|\tilde{Q}(f)|^2 df$

where $S_h(f)$ is the one-sided noise power spectrum of the detector: $\langle \tilde{n}(f) \tilde{n}^*(f') \rangle = \frac{1}{2} S_h(|f|) \delta(f - f')$

» We can define an inner product

$$
(A, B) = \int_{-\infty}^{\infty} \tilde{A}(f) \tilde{B}^*(f) S_h(|f|) df
$$

and rewrite $\langle S \rangle = (\frac{\tilde{C}}{S_h}, \tilde{Q})$ and $\langle N^2 \rangle = \frac{1}{2} (\tilde{Q}, \tilde{Q})$

» What is the optimal filter *Q* maximizing $SNR^2 = \frac{S}{S^2} = 2 \frac{(\frac{C}{S_h}, \tilde{Q})^2}{(\tilde{O}, \tilde{O})}$? use property $(A, B)^2 \leq (A, A)(B, B)$ $(A, B)^2 = (A, A)(B, B)$ only if A proportional to B

Matched filtering (III)

$$
\text{We choose } \tilde{Q}(f) \propto \frac{\tilde{C}(f)}{S_h(|f|)} = \alpha \frac{\tilde{T}(f)}{S_h(|f|)} e^{2\pi i f t_0}
$$

» Signal S for arrival time offset t_0 is given by

$$
S = \int_{-\infty}^{\infty} \tilde{h}(f) \tilde{Q}^*(f) df
$$

= $\alpha \int_{0}^{\infty} \frac{\tilde{h}(f) \tilde{T}^*(f)}{S_h(f)} e^{-2\pi i f t_0} df$
Fourier transform of S

S can be easily obtained for all arrival times $t₀$ by means of an FFT

» The optimal signal to noise ratio is: $SNR^2 = 2\alpha^2(\frac{\tilde{T}}{S_b}, \frac{\tilde{T}}{S_b})$

If T is normalized such that $(\frac{\tilde{T}}{S_b}, \frac{\tilde{T}}{S_b}) = \frac{1}{2}$ then $\langle N^2 \rangle = 1$ and $SNR^2 = \alpha^2$

Matched filtering in practice (I)

- The FFT allows to extract S for all possible arrival times
	- » Easy to maximize SNR over t_0

• The phase of the chirp signal is unknown

$$
h(t) = A [h_c(t) \cos \Phi + h_s(t) \sin \Phi]
$$

cosine and sine phases of the waveform

» The SNR has to be maximized over all possible values of Φ Filter with T_{0} and T_{90} and take quadratic sum

$$
S^2 = \sqrt{S_{0} \cdot {^2} + S_{90} \cdot {^2}}
$$

Noise has a χ^2 distribution with 2 degrees of freedom $p(\rho) = \rho e^{-\rho^2/2}$

Signal has a non-central χ^2 distribution Gaussian distribution if signal strong enough

Matched filtering is optimal

- If the noise is Gaussian, the matched filtering provides the optimal statistic
	- » Selecting events by setting a threshold on the SNR $\rho > \rho^*$ guarantees the lowest false alarm probability for a given detection probability

Scanning the parameter space (I)

- » The template T(t) depends on the source parameters: masses, spin
	- It is not possible to maximize analytically the SNR for those intrinsic parameters
	- It is necessary to try a family of templates sampling the parameter space
	- Let us forget about spin and concentrate on the mass parameters
- » Now that we know the optimal filter, let us redefine the inner product as:

$$
(a, b) = 4 \Re \int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S_h(f)} df
$$

With properly normalized templates, the filtered SNR for template u is $SNR = (h, u)$, or rather $\max_{\phi_c, t_c}(h, u(\theta)e^{i(2\pi ft_c + \phi_c)})$

 $\lambda = (\phi_c, t_c, \theta)$ with θ the intrinsic parameters

If data containing signal $u(\lambda_1)$ is filtered with a template with different parameters $u(\lambda_2)$ the fraction of the optimal SNR recovered is given by the ambiguity function $A(\lambda_1, \lambda_2) = (u(\lambda_1), u(\lambda_2))$ maximized over extrinsic parameters, i.e. is given by the match:

 $M(\theta_1, \theta_2) = \max_{\phi_c, t_c} (u(\theta_1), u(\theta_2)e^{i(2\pi ft_c + \phi_c)})$

Scanning the parameter space (II)

» From the match, define a metric on the parameter space

$$
g_{ij}(\theta) = -\frac{1}{2} \left. \frac{\partial^2 M(\theta, \Theta)}{\partial \Theta^i \partial \Theta^j} \right|_{\Theta = \theta}
$$

 λ In the regime 1-M \leq 1 the match can be approximated by

$$
M(\theta, \theta + \delta \theta) \sim 1 - g_{ij} \delta \theta^i \delta \theta^j
$$

» Instead of the masses m_1 , m_2 , it is more convenient to use as parameters:

[Ref.8]

$$
\tau_0 = \frac{5}{256} M^{-5/3} (\pi f_0)^{-8/3} \eta^{-1}
$$

$$
\tau_1 = \frac{5}{192} M^{-1} (\pi f_0)^{-2} \left(\frac{743}{336 \eta} + \frac{11}{4} \right)
$$

- » For matches above ~95%, isomatch contours are ellipses
- 18 \ast In the τ_0 , τ_1 space, the metric components g_{ii} are constant at 1PN order, and have small variations at higher order.

Scanning the parameter space (III)

- » Each isomatch contour defines a region of the parameter space which overlaps with the template in the center with a match better than some value M
- » The template in the center can be used to search for signals in that region of the parameter space, at the price of a controlled loss of SNR (< 1 – M)
- » Templates should be placed over the parameter space in order to
	- Achieve coverage of space (no « holes »)
	- Preserve search efficiency: keep number of templates as low as possible

» Things become difficult when other parameters (like spins) need to be taken into account (> 2 dimensions) » To be efficient and safe

– Take into account variations of ellipse size and orientation across the parameter space

[Ref.9]

19 » For Virgo at design sensitivity, to search the 1-30 M_{\odot} space with $f_0 = 30$ Hz and a minimal match of 98%, ~ 50000 templates needed

Hierarchical methods

- Template based searches can be computationally demanding when the number of templates is large
	- » Depends on the detector bandwidth
	- » Depends on the number of parameters to be scanned

• Hierarchical methods aim at reducing the computing needs

- » Conduct search in several steps, e.g.:
	- 1st step: use a coarser template bank, i.e. a smaller minimal match lower threshold to compensate for reduced signal-template match and keep good detection probability $(\Rightarrow$ increased FAR)
	- 2nd step: for triggers above threshold at 1st step, refine analysis with a higher density template bank

[Ref.10]

- $-$ Computing gain can be of order \sim 25
	- Depends on background!

Hierarchical methods: the multi-band approach (I)

- The computing cost of a matched filter search based on a template bank is due to
	- \rightarrow The number of templates \leftarrow detector bandwidth
	- » The size of the FFT involved in the matched filtering operation
		- Template duration \leftarrow dominated by the low frequency evolution
		-
		- $-$ Sampling frequency \leftarrow imposed by the high frequency content of the signal
- The analysis can be split in a few bands (two or three)

Hierarchical methods: the multi-band approach (II)

- Build one bank of *real* templates per frequency band
	- » Less templates in each bank
	- » Short templates in high frequency band
	- » Data can be downsampled for the low frequency bands filtering
	- \Rightarrow Less and shorter FFTs

Filter data with each template bank

» Complex filtered signal (phase and quadrature) for each template

Hierarchical methods: the multi-band approach (III)

Build a bank of *virtual* templates on the full frequency band

» To each virtual template associate a real template in each frequency band

Add coherently the filtered signals

- » Interpolate low frequency band results
- » Apply time delays and phase offsets between frequency bands
	- Take signal evolution into account
- » Conditional combination
	- If SNR exceeds some threshold in at least one of the bands
	- Built-in hierarchy
- Final threshold is applied on combined signal

Background is not Gaussian!

Coincidences

- » Reduce false alarm rate by requiring coincident triggers in several detectors
- » Allows to estimate the non-Gaussian background from the data themselves

Special case of targeted searches

- » e.g. GRB
- Estimate background "off source"

Instrumental vetoes

- » Check for anomalies in detector behavior, statistically associated with excess triggers
	- Signal based vetoes
		- 24 » Check trigger internal consistency with expected CB signal

Coincidences

Require coincident triggers in 2 or more detectors

» Check parameter consistency within allowed « windows »

$$
\Delta t,~~\Delta{\cal M},~\Delta\eta
$$

- » Smaller coincidence windows \Rightarrow larger reduction of FAR
	- Window size depends on the resolution with which each detector is able to determine those parameters
	- Δt must allow for time of flight between detectors

LIGO Hanford – LIGO Livingston: 10 ms

Virgo – LIGO: 30 ms

Coincidences (II)

Fixed coincidence windows are not optimal

Parameters are correlated

Errors on parameters vary across the parameter space Sources at fixed SNR $10²$ Adv.LIGO Errors in t_c Initial LIGO $10¹$ VIRGO $10⁰$ $10²$ Errors in chirp mass $10¹$ $10⁰$ 10 [Ref.12] 10^{-2} $10²$ Errors in eta 10^{1} 10^0 mmundung**unfiri**n $10⁰$ 10^{1} Mass of the binary (M_{\odot}) 26

Coincidences (III)

 4.6

 4.8

 τ_0

67.725

67.72

 $t_{\rm C}$

5

Use ellipsoids to define coincidences

- » Builds in correlation and accuracy variation
- Achieves background reduction of a factor 10

[Ref.13]

27

Coincidences (IV)

- » Works well for distant sites
- » Co-located detectors (LIGO H1-H2) usually show excess coincident background with respect to time slides estimates [Ref.14]
	- Evidence for correlated noise

• Basic idea: look at how the SNR is distributed across the detector bandwidth and check whether this is consistent with what is expected from a true signal

$$
SNR^{2} = 4 \int_{0}^{\infty} \frac{|\tilde{h}_{S}(f)|^{2}}{S_{h}(f)} df \sim A \int_{0}^{f_{max}} \frac{f^{-7/3}}{S_{h}(f)} df
$$

» The matched filter integral can be written as a sum over distinct frequency bands

$$
(a, b) = \sum_{j=1}^{p} (a, b)_j
$$
 with $(a, b)_j = 4 \Re \int_{\Delta f_j} \frac{\tilde{a}(f) b^*(f)}{S_h(f)} df$

» The frequency intervals are chosen so that for a true signal the SNR is uniformly shared among the frequency bands

$$
\Delta f_j
$$
 such that $(T, T)_j = \frac{1}{p}(T, T)$ or $\int_{\Delta f_j} \frac{f^{-7/3}}{S_h(f)} df = \frac{1}{p} \int_0^{f_{max}} \frac{f^{-7/3}}{S_h(f)} df$

» The filtered SNR can be written as

$$
\rho = \sum_{j=0}^{p} \rho_j \text{ with } \rho_j = (h, Q)_j
$$

» A discriminating statistics is built

$$
\chi^2 = p \sum_{j=0}^p (\Delta \rho_j)^2 \text{ with } \Delta \rho_j = \rho_j - \frac{\rho}{p}
$$
 [Ref.15]

- » If the noise is stationary and Gaussian, the χ^2 has a χ^2 -distribution with p-1 degrees of freedom both for noise and for true signals
- » Excess noise is expected to produce χ^2 values which are outliers with respect to the Gaussian noise/signal distribution

Signal based vetoes: χ^2 test (III)

• χ^2 distribution for true signals in practice

- » Large SNR events tend to show larger χ^2 values than expected from the naive distribution
- » An effect of using template banks
- » The slight mismatch between the signal and the template is enough to evidence differences between the expected SNR frequency distribution and the measured one \Rightarrow high χ^2
- » The cut used to eliminate background must allow some quadratic dependence of the χ^2 on the SNR
- » Apply threshold on variable

$$
\xi^2 = \frac{\chi^2}{p(1+\delta^2\rho^2)}
$$

Tuning

- » Adjust p, δ and threshold not to reject true signals
- » Cut must be loose enough to be robust with respect to missing features in the templates
	- Spin
	- Ringdown

[Ref.16]

Signal based vetoes: $\chi^2(t)$

» Use as discriminating variable the time

spent by $\chi^2(t)$ above some threshold in

• Look at $\chi^2(t)$: "r² veto"

coalescence time

32

Signal based vetoes: drawbacks

• Signal based vetoes are powerful but

- » They are usually computationally expensive
- » They do not provide any feedback on the detector
- » They cannot be applied when phenomenological detection templates are used

Instrumental vetoes (I)

- Identify anomalies in the detector behavior/environment statistically coincident with CB triggers
	- » Ideally, understand origin of bad behavior and fix it
	- » Help clean up the background by eliminating the corresponding triggers

Instrumental vetoes should be

- » Efficient: eliminate false triggers, especially triggers with high SNR
- » Relevant: they should be often enough associated with triggers (use percentage)
- » Cheap: they should not eliminate a large fraction of the data (dead time)
- » Safe: they should not eliminate true signals
	- $-$ safety checked with hardware injections \rightarrow

Hardware injections are simulated signals physically in the interferometer by acting on the mirrors, to check the analysis pipeline as a whole, from the reconstruction of the h(t) signal to the trigger production, and to check the safety of vetoes.

Instrumental vetoes (II)

- Vetoes are categorized according to severity, statistical correlation and dead time
	- » Category 1
		- Data not suitable for being analyzed
		- e.g.: detector not at operating point; missing data…
	- » Category 2
		- Well understood instrumental problems
		- Strong statistical correlation
		- Usually low dead time
		- e.g.: overflow in ADC digitizing photodiode signals
	- » Category 3
		- Suspected instrumental problems
		- Positive statistical correlation, but not well understood
		- Dead time can be large
		- This category also includes ad-hoc vetoes based on auxiliary channels
		- e.g.: high seismic activity, strong wind
	- » Category 4
		- Poorly understood, weak but positive correlation
		- May veto whole noisy epochs

Instrumental vetoes (III)

- Vetoes based on data quality flags pointing out understood detector / environment bad behavior
- Vetoes based on auxiliary channels showing glitch correlation with GW channel

Ad-hoc vetoes

- » Use photodiode signals to veto triggers caused by dust particles passing through beam
	- Keep veto safe!

Improving the detection statistic

SNR

Combining all this: the LIGO pipeline

Network analysis (I)

- Several detectors are a tool to cope with excess noise, but they also allow to extract more science
- With a single interferometer
	- » Can in principle measure masses, spins, and effective distance to compact binary coalescence.
- With two geographically separated interferometers
	- » Can in principle locate source on sky annulus via time delay
	- » Can in principle also measure inclination, polarization angle as function of sky location
- With three geographically separated interferometers
	- » Can in principle measure the sky position and all other parameters of the binary

Network analysis (II)

- Differently located and oriented detectors have different sensitivities for a given source direction
	- » e.g.: sensitivity for a circularly polarized GW

Coherent analysis (I)

- If the noise is stationary and Gaussian, the optimal strategy is to perform a coherent search
	- » Treat each detector signal as a component of a global detector signal, and perform matched filter with global templates

Correlators at detector *i* for Time delay $\tau_i(\theta, \phi)$ the two templates in quadrature depending on source direction are $C_0^i(t)$ and $C_{\frac{\pi}{2}}^i(t)$
 $SNR_{network}^2 = \sum_{i,j} p_{i,j}(\theta, \phi) \left[C_0^i(t - \tau_i(\theta, \phi)) C_0^j(t - \tau_j(\theta, \phi)) + (0 \to \frac{\pi}{2}) \right]$ Weighting matrix, depending on the location/orientation of the detectors, and on their relative sensitivity $SNR^2 = \kappa^2 \left\{ \frac{1}{2} \sum_i |E_i(\theta, \phi, \iota, \psi)|^2 \right\}$ Extended beam patterns, Intrinsic source strengthdepending on detector location, orientation, sensitivity 41

Coherent analysis (II)

- Performing network matched filtering is computationally expensive
	- » A larger parameter space should be scanned

[Ref.19]

- Arrival time, source mass parameters, source direction…
- Non-Gaussian noise prevents from relying only on a coherent search anyway
- Used at follow-up level

Setting upper limits

- In the absence of a detection, set upper limits on the coalescence rate [Ref.22]
	- » Use loudest event statistic in a Bayesian approach
	- » Probability that all signal events have SNR below some value ρ :

 $P(\rho|\mu) = e^{-\mu\epsilon(\rho)}$ (signal Poisson distributed) $\mu = R T$ with R the event rate and T the observation time $\epsilon(\rho)$: signal detection efficiency with SNR threshold ρ

» Neglecting the background, posterior probability distribution for μ :

 $P(\mu < \mu_p|\rho_{max}) = \mathcal{N}^{-1} \int_0^{\mu_p} d\mu \ p(\mu) \ p(\rho_{max}|\mu)$ with $p(\rho|\mu) = dP(\rho|\mu)/d\rho$ Solve $p = P(\mu < \mu_p | \rho_{max})$ for μ_p to get 100p% CL upper limit

With uniform prior $p(\mu)$ $R_{90\%} = \frac{3.890}{T \epsilon (\rho_{max})}$

- » The background can be taken into account to get better upper limit
- Best current upper limit for BNS (LIGO S5)
	- μ R_{90%} = 1.4 10⁻² yr⁻¹ L₁₀⁻¹ [Ref.16]

Low mass search (I)

- Search for binary systems consisting of neutron stars and/or black holes, with total mass between 2-35 M_{\odot} and a minimum component mass of 1 M_{\odot}
- 2nd order post-Newtonian templates

Low mass search (II)

■ **BBH rate** =
$$
6 \times 10^{-5} L_{10}^{-1} \text{ yr}^{-1}
$$

\n■ **CP1 - 2 ORGE**

\n■ **NSBH rate** = $6 \times 10^{-5} L_{10}^{-1} \text{ yr}^{-1}$

Astrophysical best estimate rates

» BNS rate 90% confidence = 1.4 x 10⁻² L₁₀⁻¹ yr⁻¹

» BBH rate 90% confidence $= 7.3 \times 10^{-4} L_{10}^{-1} \text{ yr}^{-1}$

» NSBH rate 90% confidence = $3.6 \times 10^{-3} L_{10}^{-1}$ yr⁻¹

» BNS rate = $5 \times 10^{-5} L_{10}^{-1} \text{ yr}^{-1}$

Astrophysical optimistic rates

» BNS rate = $5 \times 10^{-4} L_{10}^{-1} \text{ yr}^{-1}$

Best current results

- » BBH rate = $4 \times 10^{-7} L_{10}^{-1} \text{ yr}^{-1}$
- » NSBH rate = 2 x 10⁻⁶ L₁₀⁻¹ yr⁻¹

~3 orders of magnitude

46

Low mass search (III)

Compare rate upper limits to astrophysical expected rates

~1-2 orders of magnitude

High mass search (I)

20

40

60

80

- Inspiral-Merger-Ringdown (IMR) templates to model the entire in-band gravitational wave signal
	- » High mass waveforms can be very short (~100 ms). Merger and ringdown are a large part of the in band signal.
	- » Effective-One-Body (EOB) model tuned to Numerical Relativity (NR) simulations = EOBNR waveforms

Calculated with analytic noise curve

100

Total Mass (M_{Sun})

 Could detect high mass binaries out to several hundred Mpc

120

140

160

180

200

High mass search (II)

- EOBNR: complete analytic IMR waveforms
- EOB inspiral-plunge waveform computed up to the light ring
- Merger-ringdown waveform: superposition of quasi-normal modes smoothly attached near the light ring
- Model calibrated to NR waveforms with mass ratios $1:1 - 4:1$

Time Domain EOBNR Waveforms (30+30 Ms BBH)

GRB search (I)

- 22 short GRBs during S5-VSR1 with at least two detectors taking good data
- Known time and sky location
	- » Lower thresholds can be used to dig deeper into the detector noise
- **On-source and Off-source**
	- » GW triggers associated with GRB within $[-5, +1)$ s of the reported GRB time

time

» Background estimated from ~40 minutes of nearby data

On-source trial

₩

GRB search (II)

Example from already published GRB 070201

- » Error box intersecting M31
- » Merger in Andromeda?
- » No plausible GW signal found
- $\mu_{\rm p}$ 1 M_o < m₁ < 3 M_o and 1 M_o < m₂ < 40 M_o excluded at 99% confidence

[Ref.17]

- Similar exclusion plots derived for all analyzed S5-VSR1 short GRBs
- Population statement combining results from all GRBs also derived

Ringdown search

References (I)

[1] B.Schutz, Nature 323 (1986) [2] V.Kalogera et al., Astrophys. J 601 (2004) erratum-ibid. 604 (2004) [3] R. O'Shaughnessy et al., Astrophys. J 672 (2008) [4] For PN formalism, see L.Blanchet's lesson and references therein [5] T.Damour et al., Phys. Rev. D 57 (1998) [6] A.Buonanno et al., Phys. Rev. D 59 (1999) A.Buonanno et al., Phys. Rev. D 62 (2000) [7] A.Buonanno et al., Phys. Rev. D 67 (2003) A.Buonanno et al., Phys. Rev. D 70 (2004) A.Buonanno et al., Phys. Rev. D 72 (2005) [8] B.Owen, Phys.rev.D 53 (1996) B.Owen et al., Phys. Rev. D 60 (1999) [9] D.Buskulic et al., Class. Quant. Grav. 22 (2005) [10] S.D.Mohanty, Phys. Rev. D 57 (1997) [11] F.Marion et al., Moriond Proceedings (2003) [12] K.G.Arun et al., Phys. Rev. D 71 (2005)

References (II)

[13] C.Robinson et al., GWDAW 11 (2006)

- [14] T.Cokelaer et al., LSC, GWDAW 11 (2006)
- [15] B.Allen, Phys. Rev. D 71 (2005)

[16] http://arxiv.org/abs/0905.3710 (2009)

LSC, Tuning matched filter searches for compact binary systems (2007) [17] LIGO Scientific Collaboration and K. Hurley. Astrophys. J 681(2) (2008) http://arxiv.org/abs/1001.0165 [18] P.Brady et al., LSC, GWDAW 10 (2005) [19] A.Pai et al., Phys. Rev. D 64 (2004)

[20] LIGO Scientific Collaboration Phys. Rev. D80 (2009)

[21] C.Van Den Broeck et al., gr-qc/0610126v2 (2007)

[22] P.Brady et al., Class. Quantum Grav. 21 (2004)