
Current CMT use notes

F.Carbognani

Current CMT use notes

+

CMake evaluation

Use of CMT for packages baselines installation

Currently we are making use of the CMT plug-in for SVN (CMT support
CVS and SVN) to proceed with the installation of a packages baseline
this way:

� Create a virtual package in SVN that just contain a requirements file defining
the baseline (such as DASet, BasicSet, etc.), commit and tag it (ex: v1r2)

� Go into the area where the installation should happen and then:
� cd /<install_area>� cd /<install_area>

� cmt checkout -R -r v1r2 DASet (with this command all the packages needed for the
dependencies defined by the “use” relationship are recursively exported from the SVN
archive)

� Then the cmt broadcast is used to compile the whole set of packages in the
correct order as defined by the use relationship:
� cd /<install_area>/DASet/v1r2/cmt

� cmt broadcast cmt config

� cmt broadcast make

� That’s it!

The availability of such CMT plug-in was one of the reason to choose
SVN as CVS successor

CMake Status

� The evaluation of the CMake/CPack/CTest/CDash toolsuite has
proceeded. This toolchain constitute a complete software management
solution and allow to:
� build the software
� package distributions (tar, rpm and deb files supported)
� support automated test and report via dedicated web page� support automated test and report via dedicated web page

� Available CMT to CMake translation scripts (made for the GAUDI
Project) have been studied and an early Virgo version drafted
(available on the package CMT2CMake).

� Need to create an equivalent of VirgoPolicy: VirgoPolicy.cmake

� The current version of the cmt2CMake.py script is able to manage the
simplest requirements files. The CMakeLists.txt for a simplified Fr
requirements look like this:

Cmake Status

##

CMakeLists.txt file for building v8r15

##

cmake_minimum_required (VERSION 2.8)

set(CMAKE_MODULE_PATH /users/fcarbogn/CMakeTests/CMT2CMake/v1r0/mgr/)

INCLUDE(VirgoPolicy)

VIRGO_USE_PACKAGE(root)

VIRGO_USE_PACKAGE(VirgoPolicy)

include_directories(${CMAKE_CURRENT_SOURCE_DIR}/src/zlib)

#---Libraries---

SET(Frame_srcs FrameL.c FrIO.c FrFilter.c zlib/*.c)

VIRGO_LINKER_LIBRARY(Frame ${Frame_srcs} LIBRARIES Frame)

SET(FrameROOT_srcs FrameL.c FrIO.c FrFilter.c zlib/*.c

../Linux-i686-SL4//FR_G_ROOT.cc)

VIRGO_LINKER_LIBRARY(FrameROOT ${FrameROOT_srcs} LIBRARIES Frame)

#---Executables---

VIRGO_EXECUTABLE(FrCopy FrCopy.c LIBRARIES Frame)

VIRGO_EXECUTABLE(FrDump FrDump.c LIBRARIES Frame)

VIRGO_EXECUTABLE(FrCheck FrCheck.c LIBRARIES Frame)

CMake Status

� Now there is the need to be able to manage the most complex versions
of requirements files. It may become an exponential effort (size of the
equivalent scripts developed for GAUDI is a bit scaring)

Cmake Status

� The CTest/CDash potentialities have been checked on existing Virgo
packages and a test web pages have been setup. Figure below report a
CDash screenshot. Available also online for example at:
� http://sprserver.ego-gw.it/CDash/index.php?project=Virgo&date=20120822

