
November 10, 2010 Alberto Colla 1

Leone Bosi (a), Giancarlo Cella (b), Alberto Colla (c)(d),

Cristiano Palomba (c), Livio Salconi (e)

(a) INFN-Perugia - (b) INFN-Pisa - (c) INFN-Roma1

(d) Università di Roma Sapienza - (e) Ego-Virgo

VDAS meeting, November 10th, 2010

A robust and GRID
compliant system
for Virgo data transfer

November 10, 2010 Alberto Colla 2

Outline

● Current status of Virgo data transfer

● Proposed Data Transfer (DT) framework guidelines

● DT overview

● Tests

● Data access with Virgo Database (VDB)

● Current data access at CNAF and in2p3

● Issues and proposals

November 10, 2010 Alberto Colla 3

Current status

● Present status of Virgo data transfer:
 Virgo/LIGO computing centers use different transfer/storage technologies
 SRB (IN2P3), bbftp (CNAF), LDR (LIGO)

— bbftp is obsolete and no longer supported by CNAF!
— LDR is based on obsolete native Globus file catalog (RLS)

 Does not push toward a common infrastructure for data analysis

● data administration activities, and consequently data bookkeeping
difficult to perform
 This is reflected to the end user difficulty to have an easy and intuitive

access to storage resources

November 10, 2010 Alberto Colla 4

Wishlist

● In-time data transfer to permanent storage

● Single interface to data distributed in different computing centers

● Local and remote Data integrity checks

● End-user data access through pure scientific metadata

November 10, 2010 Alberto Colla 5

Solutions

● Transfer and storage engines → GRID tools
 Standard interface to access and handle data among the most important

computing centres worldwide

 Developed, used, and supported by a wide community of scientists for the
next 10 years at least

 Data handling functions (copy, replica, etc)

 Data integrity checks

 World-wide available Logical File Catalogue (LFC)

― allows transparent access to the distributed data, hiding the underlying
complexity

● Data bookeeping → Virgo metadata catalogue (VDB)
 Bookkeeping of experiment-specific metadata allows to query data using

“physics” search criteria only

―e.g.: data taken in a given time interval, in specific science conditions, with
specific quality flags

 LFC provides transparent access to distributed data

November 10, 2010 Alberto Colla 6

Data Transfer (DT) framework
Main features:

● Code written in Python

● Synchronization with Data Acquisition (DAQ) system via socket server/client
 New produced files are automatically added to the transfer queues

 The same socket channel act as user CLI for manual intervention (add/remove files, open/close
transfer streams, etc.)

 Messages are put in a persistent command queue and periodically parsed by the DT

● Each file is associated to a transfer task, made of sequential steps
managed by synchronized queues
 Local checksum calculation (checksum queue)

 Transfer/replicas to the remote storage elements (SE)
+ remote checksum calculation (transfer queue)

 Registration in the file catalogue + VDB (registration queue)

● Multi-threading
 Each step is associated to a (configurable) number of specific threads

 Threads are run as sub-processes and monitored by the main program

November 10, 2010 Alberto Colla 7

DT workflow

Virgo

Data

Data Transfer

State

Logical
File

Catalog

VDB

Command
queue

D A Q

Socket
server

Administrator User

N
 F

 S

November 10, 2010 Alberto Colla 8

More on transfer process

● Data transfer process does not make use of unnecessary Grid services
(Information System, file catalogue, …)
 “Brute force” gridFTP (lcg-cp)

 Minimizes possible points of failures

 Remote checksum calculation comes for free

 SRM interface hides the complexity of the underlying remote SE’s architecture

― A SRM endpoint is fully identified by a small set of parameters (see later)

● Same command (lcg-cp) for local→remote and remote→remote replicas
 “Third party” (remote→remote) replicas done from the same transfer server at Cascina

 Eases transfer schema configuration (e.g. “Star” vs “Daisy chain” …)

● Load balancing
 The system keeps track of the number of incoming and outgoing streams

in each endpoint, and chooses the following transfer endpoints consequently

 Limits can be set on the number of concurrent incoming/outgoing streams
in each endpoint

November 10, 2010 Alberto Colla 9

“Robustness” features

● DT processes (local checksum, lcg-cp, etc) are run as sub-processes
monitored by the main thread
 Kill in case of timeouts

 Failure tracking

● DT retains the status of each task in a persistent local database
 Task processes are retried a (configurable) number of times before being marked as “failed”

 Failed tasks can be re-run manually by the operator, through the socket CLI

● The system keeps track of the status of each transfer endpoint
 An endpoint is automatically closed if too many transfers from/to it consecutively fail

 It can be re-opened manually by the operator through the command queue

● The command queue is persistent
 In case of crash of the DT process the command aren’t lost

● The DAQ infrastructure keeps track of the messages in case they don’t reach the socket
server
 Safe also against socket server crash

November 10, 2010 Alberto Colla 10

DT configuration

● Parameters for Data Transfer protocol are in a single .ini file

[PATHS]

outputBasePath: /grid/virgo/TSCascina

[SOURCE]

maxOut: 4

maxFailures: 5

[SE1]

hostName: storm-fe-virgo.cr.cnaf.infn.it

hostPort: 8444

srmVersion: srmv2
srmPrefix: /srm/managerv2

srmPath: /virgo3/TSCascina/

maxIn: 6

maxOut:4

maxFailures: 3

[SE2]

hostName: ccsrm02.virgo.in2p3.fr

…

[TPARAMETERS]

Timeout: 3600

NReplicas: 2

NMaxTransferRetries: 3

NMaxRegisterRetries: 3

ChecksumThreads: 4

ReplicaThreads: 4

RegisterThreads: 4

…

Base path in the LFN

Max n. of in/out transfers

Running parameters

Remote storages’ parameters

Max n. of
consecutive failures

source parameters

November 10, 2010 Alberto Colla 11

Monitoring web interface

November 10, 2010 Alberto Colla 12

Crash tests

● Data transfer framework tested with “fake” frame
files (in Rome) and with real raw data (at Cascina)

● Crash tests (incomplete list):
 Kill ongoing transfer process

 data corruption (file modified/removed
after checksum calculation)

 Grid proxy expiration

 Unmount local data partitions (NFS)

 Switch off remote endpoint

 Overfill data partitions (local and remote)

 Attempt of copy on already existing/corrupted
remote files

 Unavailability of LFC

 Data replication up to 5 different remote storage
servers

The tests served to enhance and confirm the robustness and scalability of
the system and the error recovery capabilities

November 10, 2010 Alberto Colla 13

Test Cascina → CNAF & in2p3

● “Real” raw data transferred from Cascina to Cnaf (disk/GPFS, StoRM SRM interface)
and in2p3 (tape/HPSS, dCache SRM interface)

● Synchronisation with DAQ

● Setup at Cascina:
 Single core, 4 GB RAM machine installed and configured as Grid (gLite 3.1) User Interface

 Robot Grid certificate, Grid proxy automatically renewed

 NFS mounted data disks (same setup as current transfer framework)

 Maximum available bandwidth: ~40 MB/s

● 5 days test, ~ 3 TB transferred
 bandwidth shared with official data transfer! (no ideal conditions)

November 10, 2010 Alberto Colla 14

Test results

● 1.75 GB raw data files

● Completion time from “fileadd”
to Done: ~200 s
 dominated by pure transfer

times

● Stable operation
 remember: test done during

official data transfer!

● In general files are first copied
from local to in2p3, then from
in2p3 to Cnaf
 just a consequence of the

SE order in the configuration

November 10, 2010 Alberto Colla 15

Data access with Grid tools

● The most direct way to access data transferred with the DT framework is to use the
same Grid LCG tools

● Some examples (works from any Grid User Interface):

> # List files in LFN

> lfc-ls /grid/virgo/TSCascina/50Hz/0/

V-973080000-06-Nov-2010-13h00-720F.50

V-973087200-06-Nov-2010-15h00-720F.50

...

> # Download file to local disk

> lcg-cp -v lfn:/grid/virgo/TSCascina/50Hz/0/V-973080000-06-Nov-2010-13h00-720F.50
file:`pwd`/test.50

Using grid catalog type: LFC

Using grid catalog : lfcserver.cnaf.infn.it

...
1195376640 bytes 10808.86 KB/sec avg 10241.77 KB/sec inst

Transfer took 109070 ms

> # List replicas

> lcg-lr lfn:/grid/virgo/TSCascina/50Hz/0/V-973080000-06-Nov-2010-13h00-720F.50
srm://ccsrm02.in2p3.fr/pnfs/in2p3.fr/data/virgo/tape/TSCascina//50Hz/0/V-973080000-
06-Nov-2010-13h00-720F.50

srm://storm-fe-virgo.cr.cnaf.infn.it/virgo3/TSCascina//50Hz/0/V-973080000-06-Nov-
2010-13h00-720F.50

November 10, 2010 Alberto Colla 16

Data access with VDB

GRID
LFC/SE

Lcg layer

gVDB App

V
D
B

External
STORAGE

VDB layer

Other layer

Other layer
Serve

r G
rid

 C
A

UI

GRID Space Inet Space

GRID
STORAGE

•General gVDB application example
•Can run everywhere (UI & WN)

•VDB becomes a certificated Server
•It is reachable from everywhere
inside and outside grid

(Slides by Leone)

November 10, 2010 Alberto Colla 17

Data access with VDB (2)

gVDB
DataGet

METAInfo

•LFN
•GUID
•SURL

STEP 2) The VDB returns the LFN or
FFN respecting user requests

STEP 5) The VirgoDataUI stores data locally.

GRID

STEP 3) The gVDBdataget application uses the lcg
layer to queries the GRID Metadata catalog and to get
data from SE. [LCG Layer]

STEP 4) Retrive data [LCG
Layer] DISK

V
D
B

STEP 1) The USER specifies
METADATA Infos, such as : timestart,
timestop, DQ, ITF, …[VDB Layer]

(Slides by Leone)

November 10, 2010 Alberto Colla 18

Data access with VDB (3)

GRID

FFL
(LFN GUID SURL)

VDBapi GFAL

FRAMELIB

UserAPP

VDBapi

Data processing: inside GRID with GRID tools@UI&WN

(Slides by Leone)

November 10, 2010 Alberto Colla 19

CNAF data access

● Current storage architecture: Disk (GPFS), Tape (CASTOR, archive only)

● Data accessible locally from the worker nodes and UI

● SRM backend: StoRM

● Past experiences of data access via Grid (CW group)
 Analysis done on pre-processed data, very small sizes involved (~7000 files, 300 GB for VSR2)

 Data manually registered on the LFC and downloaded to the WN’s with LCG commands

 In this case the challenging part is the concurrent request
of thousands of files from different locations

 Input from the analysis is the file logical name only (underlying complexity hidden to the user)

● Future: Migration to HSM (GEMSS)
 data is stored on disk and automatically backup on tape

 Old data (removed from disk) automatically staged back to disk when requested

 Stage-in and -out operations are transparent to the user

 User needs to know the path of the files on disk only

― Even in case files have been removed from disk, a pointer to their original path is kept, and
they are staged back to the same position

November 10, 2010 Alberto Colla 20

in2p3 data access

● Storage architecture: Tape (HPSS)

● SRM backend: dCache

● Virgo data is currently transferred with SRB and accessed with xrootd
 this must be maintained

● It is not straightforward to use xrootd to access data stored to HPSS
through dCache

● Possible solutions: install an “xrootd door” on the dCache instance,
or an “xrootd-dCache” interface
 xrootd interface adopted by the ATLAS experiment at in2p3

 Problems: building and maintaining the interface

― lack of manpower in Lyon

― our request is considered of low priority

 Needs a strong support by the Virgo collaboration

November 10, 2010 Alberto Colla 21

November 10, 2010 Alberto Colla 22

● Backup slides

Alberto Colla 23

Talk outline

● Present transfer procedure drawbacks

● Proposed Data Transfer Framework guidelines

● DT overview

● Data Transfer robustness tests

● Conclusions & work in progress

Alberto Colla 24

DT framework: guidelines

CascinaTier-0

CNAF LyonTier-1

Roma Pisa Nikhef APC-ParisTier-2 RFKI-Budapest

The Virgo computing “Tier” structure

● Critical point: data copied to the Virgo remote computing centers
(aka Storage Elements, SE) as it is produced (in-time mode)

● Data integrity checked

● Data published in the LFC and in the VDB

● Automatic error recovery

● Code modularity

● Parallel processing

● Written in Python

Alberto Colla 25

DT flux (1)

TRANSFER

queue

Choose SE

for 1st copy

Copy

OK

REPLICA

 queue

All SEs

failed

Still retries

for this SE

FAILED

 queue

set copy

to this SE

FAILED

no: increase

retry count

for this SEyes

yes

yes no

no

FFL Synchro thread Checksum thread 1st transfer thread

CHKSUM

 queue

FFL

updated

no: idle

File is in DB

Loop on FFL files

yes:

Set VALID=True

no:

new file

Set VALID=True

yes: refresh DB

For all files in DB set VALID=False

CHKSUM
queue

File is no longer in FFL

or checksum failed.

Remove from DB

no

no

File is

VALID

Local

Chksum

yes

TRANSFER

 queue

yes

Alberto Colla 26

DT flux (2)

REPLICA

 queue

Choose source SE

and dest. SE

Copy

OK

All SEs

OK or FAILED

All SEs

FAILED

FAILED

 queue

Still retries

for dest SE

set copy

to dest SE

FAILED

no: increase

retry count

for dest SE

no

REGISTER

 queue

yes

yes no

yes

yes

no

replica thread registration thread

REGISTER

 queue

Register

replica OK

All reg.

OK or FAILED
More retries

for this replica

FAILED

 queue

set register

this replica

FAILED

no: increase

retry count

for this replica
yes

yes

yes

no

no

All

registrations

FAILED

no

DONE

 queue

Loop on replicas

Alberto Colla 27

● Data transfer processes do not make use of unnecessary Grid services
(Information System, file catalogue, …)
 “brute force” gridFTP (lcg-cp)

 Minimize possible points of failures

● “Star” vs. “daisy chain” transfer modes easily switchable (even in configuration)

● Current implementation:
 random choice of source and destination SEs

 “daisy chain” transfer mode

Transfer process

Local Local

Star mode Daisy chain
mode

November 10, 2010 Alberto Colla 28

Test results (2)

● Distributions of pure
transfer times

Alberto Colla 29Cascina, November 17, 2009

Conclusions & Work in progress

● We believe that the big part of the work is done:
 the transfer system works

 it is robust, reliable, easily configurable and flexible

● Work in progress:
 Test connection with the VDB

 Queue optimization

― prioritization would allow better handling of file transfer

 Some benchmarking to evaluate the optimal transfer parameters
― e.g: number of parallel threads for each step

 “Watchdog” system for external monitoring of DT framework:
― Controls duration of external processes, kill them in case of stale

― Controls general status of DT framework, restart it in case of stale

― In case of unrecoverable problems (e.g. internal database corrupted)
resets the database and restarts DT from the last “good” file

 External monitoring requires some local system information functionality in the DT framework:
― writing dynamic information such as process id, process elapsed time, etc. on temporary text files

― Writing of a text “summary file” with the final status of each file, to allow intervention in case of failures and to set
the recovery point in case of disaster

 Mailing service to the DT administrators

Alberto Colla 30

Logical file catalogue

● If the file is replicated on at least one SE (and all the others are DONE or FAILED) the
system registers its replicas on the LFC

 Registration logic is similar to transfer one:

―(configurable) number of retries for each replica

― registration OK if at least one replica is registered,

and no unprocessed replicas exist

● In the LFC all the replicas of a file are mapped to a single logical entity

● The VDB keeps the logical name

	Slide 1
	 Outline
	 Current status
	 Wishlist
	 Solutions
	 Data Transfer (DT) framework
	 DT workflow
	 More on transfer process
	 “Robustness” features
	 DT configuration
	 Monitoring web interface
	 Crash tests
	 Test Cascina → CNAF & in2p3
	 Test results
	 Data access with Grid tools
	 Data access with VDB
	 Data access with VDB (2)
	 Data access with VDB (3)
	 CNAF data access
	 in2p3 data access
	
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	 Test results (2)
	Slide 29
	Slide 30

