A robust and GRID compliant system for Virgo data transfer

Leone Bosi ^(a), Giancarlo Cella ^(b), Alberto Colla ^{(c)(d)}, Cristiano Palomba ^(c), Livio Salconi ^(e)

(a) INFN-Perugia - (b) INFN-Pisa - (c) INFN-Roma1

^(d) Università di Roma Sapienza - ^(e) Ego-Virgo

VDAS meeting, November 10th, 2010

Outline

Current status of Virgo data transfer

Proposed Data Transfer (DT) framework guidelines

DT overview

Data access with Virgo Database (VDB)

Current data access at CNAF and in2p3

Current status

INFN Istituto Nazionale di Fisica Nucleare

- Present status of Virgo data transfer:
 - Virgo/LIGO computing centers use different transfer/storage technologies
 - → SRB (IN2P3), bbftp (CNAF), LDR (LIGO)
 - bbftp is obsolete and no longer supported by CNAF!
 - LDR is based on obsolete native Globus file catalog (RLS)
 - \rightarrow Does not push toward a **common infrastructure** for data analysis
- data administration activities, and consequently data bookkeeping difficult to perform
 - This is reflected to the end user difficulty to have an easy and intuitive access to storage resources

- In-time data transfer to permanent storage
- Single interface to data distributed in different computing centers
- Local and remote **Data integrity** checks
- End-user data access through **pure scientific metadata**

Solutions

- Transfer and storage engines \rightarrow **GRID tools**
 - Standard interface to access and handle data among the most important computing centres worldwide
 - Developed, used, and supported by a wide community of scientists for the next 10 years at least
 - **Data handling functions** (copy, replica, etc)
 - Data integrity checks
 - World-wide available Logical File Catalogue (LFC)
 - allows transparent access to the distributed data, hiding the underlying complexity

Data bookeeping → Virgo metadata catalogue (VDB)

- Bookkeeping of experiment-specific metadata allows to query data using "physics" search criteria only
 - e.g.: data taken in a given time interval, in specific science conditions, with specific quality flags
- → LFC provides transparent access to distributed data

Data Transfer (DT) framework

Main features:

- Code written in **Python**
- Synchronization with Data Acquisition (DAQ) system via socket server/client
 - \rightarrow New produced files are automatically added to the transfer queues
 - The same socket channel act as user CLI for manual intervention (add/remove files, open/close transfer streams, etc.)
 - > Messages are put in a persistent **command queue** and periodically parsed by the DT
- Each file is associated to a transfer task, made of sequential steps managed by synchronized queues
 - → Local checksum calculation (checksum queue)
 - Transfer/replicas to the remote storage elements (SE)
 + remote checksum calculation (transfer queue)
 - Registration in the file catalogue + VDB (registration queue)

Multi-threading

- \rightarrow Each step is associated to a (configurable) number of specific threads
- \rightarrow Threads are run as sub-processes and monitored by the main program

DT workflow

INFN

Istituto Nazionale

More on transfer process

- Data transfer process does not make use of unnecessary Grid services (Information System, file catalogue, ...)
 - → "Brute force" gridFTP (lcg-cp)
 - Minimizes possible points of failures
 - Remote checksum calculation comes for free
 - SRM interface hides the complexity of the underlying remote SE's architecture
 - A SRM endpoint is fully identified by a small set of parameters (see later)

Same command (**lcg-cp**) for local \rightarrow remote and remote \rightarrow remote replicas

- \rightarrow "Third party" (remote \rightarrow remote) replicas done from the same transfer server at Cascina
- Eases transfer schema configuration (e.g. "Star" vs "Daisy chain" …)

Load balancing

- The system keeps track of the number of incoming and outgoing streams in each endpoint, and chooses the following transfer endpoints consequently
- Limits can be set on the number of concurrent incoming/outgoing streams in each endpoint

"Robustness" features

- DT processes (local checksum, lcg-cp, etc) are run as sub-processes monitored by the main thread
 - \rightarrow Kill in case of timeouts
 - Failure tracking
- DT retains the status of each task in a persistent local database
 - Task processes are retried a (configurable) number of times before being marked as "failed"
 - \rightarrow Failed tasks can be re-run manually by the operator, through the socket CLI
- The system keeps track of the status of each transfer endpoint
 - An endpoint is automatically closed if too many transfers from/to it consecutively fail
 - \rightarrow It can be re-opened manually by the operator through the command queue
- The command queue is persistent
 - \rightarrow In case of crash of the DT process the command aren't lost
- The DAQ infrastructure keeps track of the messages in case they don't reach the socket server
 - Safe also against socket server crash

DT configuration

Parameters for Data Transfer protocol are in a single .ini file

Fisica Nucleare

Monitoring web interface

Transfer Status Mon Nov 8 16:06:18 2010

SE Status

SE hostname	Status	Data IN	Data OUT	Consecutive failures	Next status switch	Comment
storm-fe-virgo.cr.cnaf.infn.it	True	3	2	0	Not set	None
ccsrm02.in2p3.fr	True	4	1	0	Not set	None
local	True	0	4	0	Not set	None

Queue Status

Checksum	Transfer	Register	Done	Delayed	Dead
10	2	0	7	0	0

File Status (total files in DB: 30)

File name	Size	Current status	Local Checksum	Remote checksums	Transfer status	Transfer failures	Register status	Register failures
V-973087200-06-Nov-2010-15h00-720F.50	1200534077	Done	21DD1A11	[None, '21DD1A11']	['Done', 'Done']	[0, 1]	['Done', 'Done']	[0, 0]
V-973094400-06-Nov-2010-17h00-720F.50	1201243217	Done	3327D773	[None, '3327D773']	['Done', 'Done']	[0, 0]	['Done', 'Done']	[0, 0]
V-973116000-06-Nov-2010-23h00-720F.50	1200546935	Done	7513FB21	[None, '7513FB21']	['Done', 'Done']	[0, 0]	['Done', 'Done']	[0, 0]
V-973137600-07-Nov-2010-05h00-720F.50	1200649749	REPLICA[0->2]_START	5051BC2A	[None, None]	[None, None]	[0, 0]	[None, None]	[O, O]
V-973144800-07-Nov-2010-07h00-720F.50	1201040263	REPLICA[1->2]_START	15978406	[None, None]	['Done', None]	[0, 0]	[None, None]	[O, O]
V-973195200-07-Nov-2010-21h00-720F.50	0	Waiting	None	[None, None]	[None, None]	[O, O]	[None, None]	[O, O]
V-973224000-08-Nov-2010-05h00-720F.50	0	Waiting	None	[None, None]	[None, None]	[0, 0]	[None, None]	[O, O]
V-973231200-08-Nov-2010-07h00-720F.50	0	Waiting	None	[None, None]	[None, None]	[O, O]	[None, None]	[O, O]
V-973245600-08-Nov-2010-11h00-720F.50	0	Waiting	None	[None, None]	[None, None]	[0, 0]	[None, None]	[O, O]
V-973252800-08-Nov-2010-13h00-720F.50	0	Waiting	None	[None, None]	[None, None]	[0, 0]	[None, None]	[O, O]
V-973260600-08-Nov-2010-15h10-60F.50	0	Waiting	None	[None, None]	[None, None]	[0, 0]	[None, None]	[0, 0]
V-973261200-08-Nov-2010-15h20-60F.50	0	Waiting	None	[None, None]	[None, None]	[O, O]	[None, None]	[O, O]
V-973080000-06-Nov-2010-13h00-720F.50	1199989141	Done	F00334DF	[None, 'F00334DF']	['Done', 'Done']	[0, 1]	['Done', 'Done']	[0, 0]
V-973101600-06-Nov-2010-19h00-720F.50	1200942907	Done	2E39F961	[None, '2E39F961']	['Done', 'Done']	[0, 1]	['Done', 'Done']	[0, 0]

Istituto Nazionale di Fisica Nucleare

Crash tests

- Data transfer framework tested with "fake" frame files (in Rome) and with real raw data (at Cascina)
- Crash tests (incomplete list):
 - ➔ Kill ongoing transfer process
 - data corruption (file modified/removed after checksum calculation)
 - Grid proxy expiration
 - Unmount local data partitions (NFS)
 - Switch off remote endpoint
 - Overfill data partitions (local and remote)
 - Attempt of copy on already existing/corrupted remote files
 - Unavailability of LFC
 - Data replication up to 5 different remote storage servers

The tests served to enhance and confirm the **robustness** and **scalability** of the system and the **error recovery** capabilities

- "Real" raw data transferred from Cascina to Cnaf (disk/GPFS, StoRM SRM interface) and in2p3 (tape/HPSS, dCache SRM interface)
- Synchronisation with DAQ
- Setup at Cascina:
 - Single core, 4 GB RAM machine installed and configured as Grid (gLite 3.1) User Interface
 - > Robot Grid certificate, Grid proxy **automatically renewed**
 - > NFS mounted data disks (same setup as current transfer framework)
 - Maximum available bandwidth: ~40 MB/s
- 5 days test, ~ 3 TB transferred
 - bandwidth shared with official data transfer! (no ideal conditions)

Test results

- 1.75 GB raw data files
- Completion time from "fileadd" to Done: ~200 s
 - dominated by pure transfer times
- Stable operation
 - remember: test done during official data transfer!
- In general files are first copied from local to in2p3, then from in2p3 to Cnaf
 - just a consequence of the SE order in the configuration

80

local checksum

300

600

1200

replica to CNAF

Data access with Grid tools

- The most direct way to access data transferred with the DT framework is to use the same Grid LCG tools
- Some examples (works from any Grid User Interface):

```
> # List files in LEN
> lfc-ls /grid/virgo/TSCascina/50Hz/0/
V-973080000-06-Nov-2010-13h00-720F.50
V-973087200-06-Nov-2010-15h00-720F.50
. . .
> # Download file to local disk
> lcg-cp -v lfn:/grid/virgo/TSCascina/50Hz/0/V-973080000-06-Nov-2010-13h00-720F.50
file: pwd /test.50
Using grid catalog type: LFC
Using grid catalog : lfcserver.cnaf.infn.it
. . .
1195376640 bytes 10808.86 KB/sec avg 10241.77 KB/sec inst
Transfer took 109070 ms
> # List replicas
> lcg-lr lfn:/grid/virgo/TSCascina/50Hz/0/V-973080000-06-Nov-2010-13h00-720F.50
srm://ccsrm02.in2p3.fr/pnfs/in2p3.fr/data/virgo/tape/TSCascina//50Hz/0/V-973080000-
06-Nov-2010-13h00-720F.50
srm://storm-fe-virgo.cr.cnaf.infn.it/virgo3/TSCascina//50Hz/0/V-973080000-06-Nov-
2010-13h00-720F.50
```

Eisica Nucleare

Data access with VDB

I N F N

Data access with VDB (2)

(Slides by Leone)

I N F N

Istituto Nazionale di Fisica Nucleare

Data access with VDB (3)

(Slides by Leone)

INFN

Istituto Nazionale di Fisica Nucleare

Data processing: inside GRID with GRID tools@UI&WN

CNAF data access

- Current storage architecture: **Disk** (**GPFS**), **Tape** (**CASTOR**, archive only)
- Data accessible locally from the worker nodes and UI
- SRM backend: StoRM
- Past experiences of data access via Grid (CW group)
 - Analysis done on **pre-processed** data, very small sizes involved (~7000 files, 300 GB for VSR2)
 - > Data manually registered on the LFC and downloaded to the WN's with LCG commands
 - In this case the challenging part is the concurrent request of thousands of files from different locations
 - \rightarrow Input from the analysis is the **file logical name** only (underlying complexity hidden to the user)
- Future: Migration to HSM (GEMSS)
 - data is stored on disk and automatically backup on tape
 - Old data (removed from disk) automatically staged back to disk when requested
 - Stage-in and -out operations are transparent to the user
 - \rightarrow User needs to know the path of the files on disk only
 - Even in case files have been removed from disk, a pointer to their original path is kept, and they are staged back to the same position

in2p3 data access

- Storage architecture: Tape (HPSS)
- SRM backend: **dCache**
- Virgo data is currently transferred with SRB and accessed with xrootd
 this must be maintained
- It is not straightforward to use xrootd to access data stored to HPSS through dCache
- Possible solutions: install an "xrootd door" on the dCache instance, or an "xrootd-dCache" interface
 - > xrootd interface adopted by the **ATLAS** experiment at in2p3
 - Problems: building and maintaining the interface
 - lack of manpower in Lyon
 - our request is considered of low priority
- Needs a strong support by the Virgo collaboration

Backup slides

Talk outline

INFN Istituto Nazionale di Fisica Nucleare

- Present transfer procedure drawbacks
- Proposed Data Transfer Framework guidelines
- DT overview
- Data Transfer robustness tests
- Conclusions & work in progress

DT framework: guidelines

- Critical point: data copied to the Virgo remote computing centers (aka Storage Elements, SE) as it is produced (in-time mode)
- Data integrity checked
- Data published in the LFC and in the VDB
- Automatic error recovery
- Code **modularity**
- Parallel processing
- Muitton in Duthon

DT flux (1)

INFN Istituto Nazionale di Fisica Nucleare

no

yes

DT flux (2)

Transfer process

- Data transfer processes do not make use of unnecessary Grid services (Information System, file catalogue, ...)
 - "brute force" gridFTP (lcg-cp)
 - ➔ Minimize possible points of failures
- "Star" vs. "daisy chain" transfer modes easily switchable (even in configuration)

li Fisica Nucleare

- Current implementation:
 - → random choice of source and destination SEs
 - → "daisy chain" transfer mode

Test results (2)

INFN Istituto Nazionale di Fisica Nucleare

Conclusions & Work in progress

- We believe that the big part of the work is done:
 - → the transfer system works
 - > it is robust, reliable, easily configurable and flexible
- Work in progress:
 - Test connection with the VDB
 - Queue optimization
 - prioritization would allow better handling of file transfer
 - Some benchmarking to evaluate the optimal transfer parameters
 - e.g: number of parallel threads for each step
 - → "Watchdog" system for external monitoring of DT framework:
 - Controls duration of external processes, kill them in case of stale
 - Controls general status of DT framework, restart it in case of stale
 - In case of unrecoverable problems (e.g. internal database corrupted) resets the database and restarts DT from the last "good" file
 - > External monitoring requires some local **system information** functionality in the DT framework:
 - writing dynamic information such as process id, process elapsed time, etc. on temporary text files
 - Writing of a text "summary file" with the final status of each file, to allow intervention in case of failures and to set the recovery point in case of disaster
 - Mailing service to the DT administrators

Logical file catalogue

- If the file is replicated on at least one SE (and all the others are DONE or FAILED) the system registers its replicas on the LFC
 - Registration logic is similar to transfer one:
 - -(configurable) number of retries for each replica
 - registration OK if at least one replica is registered, and no unprocessed replicas exist
- In the LFC all the **replicas** of a file are mapped to a **single logical entity**
- The VDB keeps the logical name

