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Introduction 
 
 
Points that should be clear: 
 
o a f-d filter is a filter that is easier than a time domain filter to be synthesized, in 

case of "hard" requirements (0 phase, very steep frequency cut,…) 
 
o it is a FIR filter, so it is intrinsically stable and it operates on the data exactly like 

a normal time domain filter (but normally has many more coefficients) 
 
o it is much faster than the equivalent time domain filter 
 
o the well known problems of the spectral estimation by periodograms don't affect 

the filter (except in the case when the spectral estimation is used for the synthesis 
of the filter (as in the case of whitening and Wiener adaptive filter synthesis). 

 
A typical drawback of a f-d filter is that it cannot be applied in real time, or, more 
exactly, if it is used in real time it loses its velocity: these because it "filters" many 
samples at once, so it has to expect for a certain number of samples to be 
accumulated. To be used in real time, one should compute an FFT for each sample.  
In any case, if one wants 0-phase filters, these are strictly non-causal (and so not 
feasible for real time operation). 
 
Another "drawback" is that these filters are often neglected in many books of signal 
analysis. 
 



Now we discuss two topics, that arouse in the Virgo discussion of 4-4-2006: 
 
o the filter error 
 
o the response to particular "hard" signals 
 
In the Appendices there are the characteristics of the frequency domain anti-aliasing 
filter compared with other proposed solution and the Matlab script used to produce 
the plots. 
 



The filter error 
 
I have synthesized a sampled sinusoidal signal (frequency 640 Hz, amplitude 1) at 
sampling frequencies of 20000 Hz (A20000 – 1000000 samples) and 4000 Hz (A4000 
– 200000 samples).  
 
From the A20000 I produced, by the frequency-domain decimation procedure 
gd_decim (inside Snag), the 4000 Hz signal B4000 (200000 samples, but about 
1000 on each extreme should be excluded). The FFT length used in gd_decim is 
16384, so the A20000 data have been divided by the procedure in 123 interlaced 
pieces. 
 
Then I just subtract the A4000 from B4000, obtaining the error signal E4000. 
 
Here are, in the same plot, the A4000 (blu) and B4000 (red) signals: 
 

 
 (the two signals are practically perfectly superposed, so only the second appears). 
 
This is the spectrum 
 



 
 

 
as it is clear the signals are almost identical. Note that the spectral spread is due to the 
spectral estimation, and is the same on both A4000 and B4000. 
 
To appreciate the difference, here is the E4000 signal: 



 
 
and the spectrum: 
 

 
 



 
 
In practice we can see that the error signal is composed by two components: 
  
o a sinusoid at the same frequency of the signal, due to the amplitude error of the 

filter (<0.00001) 
 
o a wide band noise, due to the quantization and computation errors. Note that this 

effect is present both in the A4000 and in B4000 and it seems higher in A4000 
(the "just sampled" sinusoid). This should be due to the fact that the quantization 
noise has a spectrum that is inversely proportional to the sampling frequency. 
Here are the spectra of A20000 and A4000: 

 



 
 
for comparison, here is A20000 and B4000 
 

 
so, the reconstruction by gd_decim is, for this aspect, better than the directly sampled 
data at 4000 Hz. 
 



 

Particular signals 
 
In order to understand the behaviour of the a-a filter, the analysis of the error should 
be enough, but for a better understanding, here is the analysis for particular cases. 
 

Slow beat 
 
Consider a signal that is the beat of two frequencies, say 640 Hz and 640.1 Hz. This is 
the plot (sampled at 20 kHz): 
 

 
 
and this is the output of the gd_decim (at 4 kHz) (superposed to the former): 
 



 
This is the zoom of both the signals: 
 

 
 
The spectrum of the gd_decim signal and that of the theoretic one is 
 



 
 

 
The superposition is perfect, so only the second signal appears. 
 
 
 



Two near sinusoids with very different amplitudes 
 
The two sinusoids are at 200 Hz and 200.5 Hz and the second has amplitude 0.001 of 
the other. 
 
Here is the spectra of the signal at 20000 Hz (blue) and of the signal obtained by 
gd_decim at 4 kHz (red): 
 

  
 
It should be clear that the limit is only due to the power spectrum estimation, not to 
the filter (the spectral estimation was done with a hanning window).  
 
 

The ramp 
 
In order to check the continuity, consider a ramp signal sampled at 20000 kHz and 
apply our procedure: 
 



 
 
(the thickness is due to the "x") 
 

 
 



The tiny error on the filter amplitudes at 0 frequency gives a little error on the ramp 
samples for high times: 
 

 
 
Even if this is not a practical problem for our gravitational signals, this point should 
be investigated. 
 
 



Appendix: filter responses 
 

Decimation with frequency domain a-a filter 
 
The Snag procedure, for GDs, is  
 
 

 [gdout,frfilt]=gd_decim(gdin,decim,fftlen,icreal) 
 

o gdin      sampled data input GD or double array 

o decim     decimation ratio; also non-integer  
(> 1; one every decim samples) 

o fftlen    length of the fft (divisible by 4; 0 -> 16384) 

o icreal    =1 impose real output 

 

o gdout    output data 

 
 
The frequency filter in output is given by (decim=5): 
 
 

 
 



 
 
 

 
 
 



 
 
Here is the output to a 630 Hz sinusoid (blue the 20 kHz sampling, red the 4 kHz 
sampling); note the 0 phase and perfect match: 
 

 



 
With the Virgo data: 
 

 
 

 



 
The big line: 
 

 
 
The aliased region: 
 

 
 



The peak at 1550 is not an aliased peak, as it is seen with a zoom of the superponed 
spectra: 
 

 
 
 
 
 



Butterworth low-pass 
 
A 6-order low-pass Butterworth filter with cut at 0.2 (normalized frequency)  is given 
by Matlab by: 
 
[b,a]=butter(6,0.2) 
 
b  =  [0.0003    0.0020    0.0051    0.0068    0.0051    0.0020    0.0003] 
 
 
a  = [1.0000   -3.5794    5.6587   -4.9654    2.5295   -0.7053    0.0838] 
 
 
Here is the transfer function (together with the frequency domain a-a filter) 
 

 
 



 
 
The frequency domain a-a filter is 0-phase, the phase of the Butterworth filter is 
 

 
 
 



Use of the decimate Matlab procedure 
 
Let us see the effect of the Matlab (Signal Processing toolbox) decimate procedure, 
as proposed by F.F.  In the default way, with a call like 
 
>> y5=decimate(y1,5); 
 
they say that  
 
"By default, decimate employs an eighth-order lowpass Chebyshev Type I filter. It 
filters the input sequence in both the forward and reverse directions to remove all 
phase distortion, effectively doubling the filter order." 
 
But in practice it seems not 0 phase; in fact this is the effect on a 630 Hz sinusoid: 
 

 
 
a phase shift of roughly 40 degrees. If we apply it to the Virgo data, we have: 
 



 
 

 
 
In the case of a stream of data, obviously the bi-directional filtering cannot be 
performed. 
In any case about 500 Hz are lost. 
 
 



Pulse response 
 
Let us see the pulse response of the three procedures 
 

 Butterworth 6th order (black) 
 Matlab - Cebyshev 8th order bi-directional (green) 
 Frequency filter (red) 

 
 

 
 



Note the non-symmetric response of the Matlab decimation (that means no 0-phase). 
 
 

Computer cost (computed with Matlab) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

parameters time (s) time (s)

(for 2^22 samples) (for 1 s of data)

Butterworth 6th 12 0.98 0.0047

decimate 16 2.89 0.0138

freq.dom. a-a 8132 4.00 0.0191



Appendix: the Matlab script 
 
To run the script, Snag must installed.  
 
% aa_analysis 
 
nspet=1; 
lfft=16384; 
freq=640; 
% freq=200; 
 
% Benoit 
 
g1=gd_sin('freq',freq,'len',1000000,'dt',0.00005); 
s1=gd_pows(g1,'pieces',nspet,'resolution',4,'window',2,'short'
); 
[g5,frfilt]=gd_decim(g1,5,lfft,1); 
 
g5a=gd_sin('freq',freq,'len',200000,'dt',0.00025); 
 
d5=g5-g5a; 
dd5=y_gd(d5); 
dd5=dd5(1601:198400); 
dd5=gd(dd5); 
dd5=edit_gd(dd5,'dx',0.00025,'ini',0.00025*1600); 
sd5=gd_pows(dd5,'pieces',nspet,'resolution',4,'window',2,'shor
t'); 
 
gg5=y_gd(g5); 
gg5=gg5(1601:198400); 
gg5=gd(gg5); 
gg5=edit_gd(gg5,'dx',0.00025,'ini',0.00025*1600); 
ss5=gd_pows(gg5,'pieces',nspet,'resolution',4,'window',2,'shor
t'); 
 
gg5a=y_gd(g5a); 
gg5a=gg5a(1601:198400); 
gg5a=gd(gg5a); 
gg5a=edit_gd(gg5a,'dx',0.00025,'ini',0.00025*1600); 
ss5a=gd_pows(gg5a,'pieces',nspet,'resolution',4,'window',2,'sh
ort'); 
 
% Passuelo 
 
freps=0.1; 
% freps=0.5; 
amp=1; 
% amp=0.001; 
 
b1=gd_sin('freq',freq+freps,'len',1000000,'dt',0.00005); 
b1=amp*b1+g1; 
sb1=gd_pows(b1,'pieces',nspet,'resolution',4,'window',2,'short
'); 
[b5,frfilt]=gd_decim(b1,5,lfft,1); 



 
b5a=gd_sin('freq',freq+freps,'len',200000,'dt',0.00025); 
b5a=b5a+g5a; 
 
bb5=y_gd(b5); 
bb5=bb5(1601:198400); 
bb5=gd(bb5); 
bb5=edit_gd(bb5,'dx',0.00025,'ini',0.00025*1600); 
sb5=gd_pows(bb5,'pieces',1,'resolution',4,'window',2,'short'); 
 
bb5a=y_gd(b5a); 
bb5a=bb5a(1601:198400); 
bb5a=gd(bb5a); 
bb5a=edit_gd(bb5a,'dx',0.00025,'ini',0.00025*1600); 
sb5a=gd_pows(bb5a,'pieces',1,'resolution',4,'window',2,'short'
); 
 
% ramp 
 
r1=0:0.2:199999; 
r1=gd(r1); 
r1=edit_gd(r1,'dx',0.2); 
 
[r5,frfilt]=gd_decim(r1,5,lfft,1); 
r5=gd(r5); 
 
r5a=0:199999; 
r5a=gd(r5a); 
 


