
Frequency-domain anti-aliasing filter

Sergio Frasca (April 2006)

Introduction..1
The filter error..3
Particular signals ..8

Slow beat..8
Two near sinusoids with very different amplitudes...11
The ramp ..11

Appendix: filter responses ...14
Decimation with frequency domain a-a filter ..14
Butterworth low-pass ...20
Use of the decimate Matlab procedure ..22
Pulse response..24
Computer cost (computed with Matlab) ..25

Appendix: the Matlab script...26

Introduction

Points that should be clear:

o a f-d filter is a filter that is easier than a time domain filter to be synthesized, in

case of "hard" requirements (0 phase, very steep frequency cut,…)

o it is a FIR filter, so it is intrinsically stable and it operates on the data exactly like

a normal time domain filter (but normally has many more coefficients)

o it is much faster than the equivalent time domain filter

o the well known problems of the spectral estimation by periodograms don't affect

the filter (except in the case when the spectral estimation is used for the synthesis
of the filter (as in the case of whitening and Wiener adaptive filter synthesis).

A typical drawback of a f-d filter is that it cannot be applied in real time, or, more
exactly, if it is used in real time it loses its velocity: these because it "filters" many
samples at once, so it has to expect for a certain number of samples to be
accumulated. To be used in real time, one should compute an FFT for each sample.
In any case, if one wants 0-phase filters, these are strictly non-causal (and so not
feasible for real time operation).

Another "drawback" is that these filters are often neglected in many books of signal
analysis.

Now we discuss two topics, that arouse in the Virgo discussion of 4-4-2006:

o the filter error

o the response to particular "hard" signals

In the Appendices there are the characteristics of the frequency domain anti-aliasing
filter compared with other proposed solution and the Matlab script used to produce
the plots.

The filter error

I have synthesized a sampled sinusoidal signal (frequency 640 Hz, amplitude 1) at
sampling frequencies of 20000 Hz (A20000 – 1000000 samples) and 4000 Hz (A4000
– 200000 samples).

From the A20000 I produced, by the frequency-domain decimation procedure
gd_decim (inside Snag), the 4000 Hz signal B4000 (200000 samples, but about
1000 on each extreme should be excluded). The FFT length used in gd_decim is
16384, so the A20000 data have been divided by the procedure in 123 interlaced
pieces.

Then I just subtract the A4000 from B4000, obtaining the error signal E4000.

Here are, in the same plot, the A4000 (blu) and B4000 (red) signals:

 (the two signals are practically perfectly superposed, so only the second appears).

This is the spectrum

as it is clear the signals are almost identical. Note that the spectral spread is due to the
spectral estimation, and is the same on both A4000 and B4000.

To appreciate the difference, here is the E4000 signal:

and the spectrum:

In practice we can see that the error signal is composed by two components:

o a sinusoid at the same frequency of the signal, due to the amplitude error of the

filter (<0.00001)

o a wide band noise, due to the quantization and computation errors. Note that this

effect is present both in the A4000 and in B4000 and it seems higher in A4000
(the "just sampled" sinusoid). This should be due to the fact that the quantization
noise has a spectrum that is inversely proportional to the sampling frequency.
Here are the spectra of A20000 and A4000:

for comparison, here is A20000 and B4000

so, the reconstruction by gd_decim is, for this aspect, better than the directly sampled
data at 4000 Hz.

Particular signals

In order to understand the behaviour of the a-a filter, the analysis of the error should
be enough, but for a better understanding, here is the analysis for particular cases.

Slow beat

Consider a signal that is the beat of two frequencies, say 640 Hz and 640.1 Hz. This is
the plot (sampled at 20 kHz):

and this is the output of the gd_decim (at 4 kHz) (superposed to the former):

This is the zoom of both the signals:

The spectrum of the gd_decim signal and that of the theoretic one is

The superposition is perfect, so only the second signal appears.

Two near sinusoids with very different amplitudes

The two sinusoids are at 200 Hz and 200.5 Hz and the second has amplitude 0.001 of
the other.

Here is the spectra of the signal at 20000 Hz (blue) and of the signal obtained by
gd_decim at 4 kHz (red):

It should be clear that the limit is only due to the power spectrum estimation, not to
the filter (the spectral estimation was done with a hanning window).

The ramp

In order to check the continuity, consider a ramp signal sampled at 20000 kHz and
apply our procedure:

(the thickness is due to the "x")

The tiny error on the filter amplitudes at 0 frequency gives a little error on the ramp
samples for high times:

Even if this is not a practical problem for our gravitational signals, this point should
be investigated.

Appendix: filter responses

Decimation with frequency domain a-a filter

The Snag procedure, for GDs, is

 [gdout,frfilt]=gd_decim(gdin,decim,fftlen,icreal)

o gdin sampled data input GD or double array

o decim decimation ratio; also non-integer
(> 1; one every decim samples)

o fftlen length of the fft (divisible by 4; 0 -> 16384)

o icreal =1 impose real output

o gdout output data

The frequency filter in output is given by (decim=5):

Here is the output to a 630 Hz sinusoid (blue the 20 kHz sampling, red the 4 kHz
sampling); note the 0 phase and perfect match:

With the Virgo data:

The big line:

The aliased region:

The peak at 1550 is not an aliased peak, as it is seen with a zoom of the superponed
spectra:

Butterworth low-pass

A 6-order low-pass Butterworth filter with cut at 0.2 (normalized frequency) is given
by Matlab by:

[b,a]=butter(6,0.2)

b = [0.0003 0.0020 0.0051 0.0068 0.0051 0.0020 0.0003]

a = [1.0000 -3.5794 5.6587 -4.9654 2.5295 -0.7053 0.0838]

Here is the transfer function (together with the frequency domain a-a filter)

The frequency domain a-a filter is 0-phase, the phase of the Butterworth filter is

Use of the decimate Matlab procedure

Let us see the effect of the Matlab (Signal Processing toolbox) decimate procedure,
as proposed by F.F. In the default way, with a call like

>> y5=decimate(y1,5);

they say that

"By default, decimate employs an eighth-order lowpass Chebyshev Type I filter. It
filters the input sequence in both the forward and reverse directions to remove all
phase distortion, effectively doubling the filter order."

But in practice it seems not 0 phase; in fact this is the effect on a 630 Hz sinusoid:

a phase shift of roughly 40 degrees. If we apply it to the Virgo data, we have:

In the case of a stream of data, obviously the bi-directional filtering cannot be
performed.
In any case about 500 Hz are lost.

Pulse response

Let us see the pulse response of the three procedures

 Butterworth 6th order (black)
 Matlab - Cebyshev 8th order bi-directional (green)
 Frequency filter (red)

Note the non-symmetric response of the Matlab decimation (that means no 0-phase).

Computer cost (computed with Matlab)

parameters time (s) time (s)

(for 2^22 samples) (for 1 s of data)

Butterworth 6th 12 0.98 0.0047

decimate 16 2.89 0.0138

freq.dom. a-a 8132 4.00 0.0191

Appendix: the Matlab script

To run the script, Snag must installed.

% aa_analysis

nspet=1;
lfft=16384;
freq=640;
% freq=200;

% Benoit

g1=gd_sin('freq',freq,'len',1000000,'dt',0.00005);
s1=gd_pows(g1,'pieces',nspet,'resolution',4,'window',2,'short'
);
[g5,frfilt]=gd_decim(g1,5,lfft,1);

g5a=gd_sin('freq',freq,'len',200000,'dt',0.00025);

d5=g5-g5a;
dd5=y_gd(d5);
dd5=dd5(1601:198400);
dd5=gd(dd5);
dd5=edit_gd(dd5,'dx',0.00025,'ini',0.00025*1600);
sd5=gd_pows(dd5,'pieces',nspet,'resolution',4,'window',2,'shor
t');

gg5=y_gd(g5);
gg5=gg5(1601:198400);
gg5=gd(gg5);
gg5=edit_gd(gg5,'dx',0.00025,'ini',0.00025*1600);
ss5=gd_pows(gg5,'pieces',nspet,'resolution',4,'window',2,'shor
t');

gg5a=y_gd(g5a);
gg5a=gg5a(1601:198400);
gg5a=gd(gg5a);
gg5a=edit_gd(gg5a,'dx',0.00025,'ini',0.00025*1600);
ss5a=gd_pows(gg5a,'pieces',nspet,'resolution',4,'window',2,'sh
ort');

% Passuelo

freps=0.1;
% freps=0.5;
amp=1;
% amp=0.001;

b1=gd_sin('freq',freq+freps,'len',1000000,'dt',0.00005);
b1=amp*b1+g1;
sb1=gd_pows(b1,'pieces',nspet,'resolution',4,'window',2,'short
');
[b5,frfilt]=gd_decim(b1,5,lfft,1);

b5a=gd_sin('freq',freq+freps,'len',200000,'dt',0.00025);
b5a=b5a+g5a;

bb5=y_gd(b5);
bb5=bb5(1601:198400);
bb5=gd(bb5);
bb5=edit_gd(bb5,'dx',0.00025,'ini',0.00025*1600);
sb5=gd_pows(bb5,'pieces',1,'resolution',4,'window',2,'short');

bb5a=y_gd(b5a);
bb5a=bb5a(1601:198400);
bb5a=gd(bb5a);
bb5a=edit_gd(bb5a,'dx',0.00025,'ini',0.00025*1600);
sb5a=gd_pows(bb5a,'pieces',1,'resolution',4,'window',2,'short'
);

% ramp

r1=0:0.2:199999;
r1=gd(r1);
r1=edit_gd(r1,'dx',0.2);

[r5,frfilt]=gd_decim(r1,5,lfft,1);
r5=gd(r5);

r5a=0:199999;
r5a=gd(r5a);

