

- Interest in running NoEMI tool on LIGO data has been raised by LIGO people
- NoEMI is one of the Noise Monitors tools and is integrated in the NMAPI framework.
- We take the opportunity and propose to work on a common interface for Noise Monitors for the Advanced Detectors.

- NMAPI currently sits on one single pc.
- It sits and waits for requests, passed via HTTPS.
- Upon request receipt, the information is passed to the dedicated Noise Monitor Steering Script, which deals with retrieving requested results from data source.

- We propose to make NMAPI working on more detectors data.
- Since the computational needs will be higher, we think about a distributed architecture
- The Web interface will be the same for all the detectors
- The framework is extensible thanks to its "plugin" architecture: new NMs can be added in the future

((((0)))

- •As a first check of the feasibility of our proposal, we plan to run NoEMi on the LIGO data, in a LIGO computing center (e.g. Caltech)
- Test will consist in analyzing a period of LIGO data, extract the noise lines and fill the NM database at Cascina

- •Analysis of 1 single channel requires < 2 GB RAM and one CPU
 - Data (frame files) must be accessible locally
 - e.g. at Cascina data disks are NFS mounted
- •Noise Monitor & database server available at Cascina
- Python 2.5.2 + some modules (matplotlib, numpy, MySQLdb, markup)
- MySQL port open for incoming & outgoing traffic
- Possibility to send locally created plots & web pages to web server

Storage requirements

What	Disk size / 1 day	Disk size / 1 year
Log Files - DF and auxiliary channels (1) (2)	100 MB	40 GB
Log Files – h(t) (3)	700 MB	260 GB
Log files - DF + $h(t)$ + 27 auxiliary channels (1)	3.5 GB	1.3 TB
Events database - DF and auxiliary channels	50 MB	20 GB
Events database - h(t)	200 MB	70 GB
EVF database - DF+h(t)+27 auxiliary channels	1.6 GB	600 GB
Lists of lines & plots for the daily pages	0.4 GB	150 GB
Lines database	2 MB	0.7 GB
Plots for Lines table web page (4)	100 MB	100 MB
TOTAL		2 TB
(1) Log files can be deleted/zipped after the analysis		
(2) the sizes refer to the 20 KHz sampled channels; the channels sampled at lower frequencies are smaller.		
(3) h(t) analysis is done with a lower CR thresholds, therefore its size is bigger		