First estimation according Stefano and Irene (Scattered light noise ... paper Nov 1997)

spectral signal of noise in Virgo

x(f) is the seismic displacement

kc= 4 * π / λ hc := $\frac{\lambda^2 \cdot \varepsilon}{\frac{5}{2^2} \cdot \pi^2 \cdot \text{Lt Rm}} \cdot \sqrt{\rho \mod} \sim 2 \ 10^{-25}$

The factor pmod has to be re-evaluated with the AdV parameters

$$\rho \text{mod} := 0.423 \pi \cdot \text{k}^2 \cdot \text{Bo} \cdot \frac{\text{Rm}^2}{\text{Rt}^2}$$

$\lambda := 1.064 10^{-6} \mathrm{m}$	wavelenght
k := 0.1	? Losses coefficient, dimensionless
Rm := 0.175 m	? mirror radius (coating)
$\operatorname{Rt} := 0.5 \mathrm{m}$	trap cryo surface inner radius
Lt := 3000 m	tube lenght
Bo := $1.47 \cdot 10^{-4}$? surface properties (stainless steel), aluminum or Ice better ?
£:= 10 ^{−5}	? scattering losses

0.423 is the view integral, for teta1, teta2 \approx 0.15, 0.12

We can start considering the ground seism measured in Virgo in particularly bad weather conditions, that often limits the present Virgo, inducing 'upconversion' effects. See the following data by Irene: the rms of virgo soil displacement can be greater than lambda in case of sea activity medium to very large (we measured up to 15microns at 0.3 Hz)