computation of losses in NDRCs : a Matlab/FINESSE comparison

Outline

- Motivations
- Eigenmodes comparison

• Losses comparison

• Summary

Motivations - 1

- We want to compute the losses in th FP arm cavity due to astigmatism of NDRCs, as they could affect the sensitivity of the interferometer
- To estimate the effect of astigmatism in NDRCs, we defined an overlap integral (OI):

$$\gamma = \frac{\left\langle E(w1, R1) \middle| E^*(w2, R2) \right\rangle}{\left\langle E(w1, R1) \middle| E^*(w1, R1) \right\rangle}$$

Eo(w1, R1) = FP arm cavity mode Eo(w2, R2) = PRC astigmatic mode

Fundamental mode: $E_0 = e^{-jP(z)} \exp\{-x^2(\frac{1}{w_x^2} + j\frac{k}{2R_x}) - y^2(\frac{1}{w_y^2} + j\frac{k}{2R_y})\}$

3

Motivations - 2

- The OI allows to compute the mis-matching between the astigmatic mode of the ND-PRC, the mode of the FP in the arm, the input beam
- TCS defined indipendently the same OI to account for thermal effects :

$$\gamma = \left\langle \Psi, e^{ikZ}\Psi \right\rangle \qquad \Psi \qquad \Psi = e^{ikZ}\Psi$$
Fafone, Rocchi -

AdV biweekly meeting
12.03.09
$$P = 2\pi \int_{0}^{a} e^{ikZ(r)} |\Psi(r)|^{2} r dr$$
From J.Y. Vinet,
Thermal Simulations Meeting,
Cascina 1.10.08
From J.Y. Vinet,

Motivations - 3

- We developed a Matlab code to compute the ND-PRC astigmatic mode and its overlap integrals with input beam and FP mode.
- Which is the relation of the OI with power losses ? $P = P_0 \bullet G_{PRC} \bullet G_{FP} \bullet \gamma^2_{input} \bullet \gamma^2_{FP}$
- Finesse can compute the power stored in the FP arm and PRC cavities
- A comparison between Finesse and Matlab simulations is needed

Eigenmodes comparison – scen. 2

• Null tilt of PRC mirrors (PRM3, PRM2) :

	Finesse :	Z	zR	Matlab :	Z	%		zR	%	
PRM1	"cav" PRC on M1	1,65509	0,506355		1,65619		-0,0665	0,504715		0,324
PRM2		8,8449173	0,506355		8,84381		0,0125	0,504715		0,324
PRM3		6,31298	0,004264		6,31297		0,0002	0,004251		0,305
AR		1009,22	112,78		1009,28		-0,0059	112,51		0,239
HR (sub)		1400,01	149,6		1400,09		-0,0057	149,26		0,227
• 1,3 (deg tilt + l Finesse :		ROC = 1e	e+25 : Matlab :	Z	%		zR	%	
PRM1 t	"cav" PRC on M1	1,62305	0,550844		1,6242773		-0,07562	0,549240527		0,291
PRM2 t		8,87695	0,550844		8,875722693		0,01383	0,549240527		0,291
PRM3 t		6,3131	0,00460396		6,31308585		0,00022	0,004591789		0,264
AR t		964,082	111,324		964,1344738		-0,00544	111,1011414		0,200
HR (sub) t		1397,36	161,378		1397,438257		-0,00560	161,0555477		0,200
PRM1 s		1,29805	0,815189		1,299444482		-0,10743	0,814517373		0,082
PRM2 s		9,20195	0,815189		9,200555518		0,01515	0,814517372		0,082
PRM3 s		6,31637	0,00636659		6,316360425		0,00015	0,006363148		0,054
AR s		952,694	151,968		952,6920431		0,00021	151,9752723		-0,005
HR (sub) s		1380,85	220,297		1380,850966		-0,00007	220,307914		-0,005

• z = distance to waist ; zR = Rayleigh range ; t = tang. ; s = sagitt.

• % = percentage difference between Matlab and Finesse values 6

Eigenmodes comparison – scen. 2

- The percentage difference between Matlab/ Finesse varies for the Rayleigh range zR of the eigenmode, as the PRC mirror tilt or the IM AR curvature have different values.
- The percentace difference for the distance to waist z doesn't show any significant variation with respect to the same parameters.
- This point should be further investigated.

Power Losses Comparison -1

• A simple FP cavity has been simulated, like the one of AdV arm, with Matlab and Finesse

 A mis-matching (with respect to the eigenmode of the cavity) beam is then injected in the cavity

Power Losses - 1

Power Losses Comparison -2

- A system of two coupled cavities has been simulated, like the one composed by AdV FP arm cav. + PRC, with Matlab and Finesse
- Then, two simple cases can be given among others :
 - A mis-matching (with respect to the eigenmode of the cavity) beam is injected in the cavity

or

 A mis-match between the two cavities is introduced, varying PRM1 RoC

Power Losses - 2

• FP / PRC coupled cavities, NULL TILT of PRC mirrors, mis-match. input beam :

Power Losses Comparison - 3

- A system of two coupled cavities has been simulated, like the one composed by AdV FP arm cav. + PRC, with Matlab and Finesse
 - A mis-match between the two cavities is introduced, varying PRM1 RoC : losses are higher in Finesse than in Matlab.

Summary

- For matched coupled cavities, the power losses from Finesse and the coupling factor γ² from the Matlab code give same results.
- Point still under investigation :
 - mis-match between the two cavities, losses are higher in Finesse than in Matlab.
- A comparison for the astigmatic PRC case must be realised.