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Abstract—Two methods of compensation of thermal lensing in 

high power terbium gallium garnet (TGG) Faraday isolators 
have been investigated in detail: compensation by means of an 
ordinary negative lens and compensation using FK51 Schott glass 
possessing a negative dn/dT. Key thermo-optic constants for 
TGG crystals and FK51 glass were measured. We find that the 
contribution of the photo-elastic effect to the total thermal lens 
cannot be neglected either for TGG or for FK51. We define a 
figure of merit for compensating glass and show that for FK51, 
an ordinary negative lens with an optimal focus is more efficient, 
but requires physical repositioning of the lens for different laser 
powers.  In contrast, the use of FK51 as a compensating element 
is passive and works at any laser power, but is less effective than 
simple telescopic compensation. The efficiency of adaptive 
compensation can be considerably enhanced by using a 
compensating glass with figure of merit more than 50, a crystal 
with natural birefringence or gel. 
 

Index Terms—Laser beam distortion, Laser thermal factors, 
Optical propagation in anisotropic media, Optical isolators, 
Thermal variables measurements, Laser accessories, Optical 
polarization, Faraday effect. 
 

I. INTRODUCTION 
ECENTLY, the average power of solid-state and fiber 
lasers has overcome the kilowatt barrier and continues to 

steadily increase [1, 2]. Therefore, the search for methods of 
suppressing thermal effects caused by laser absorption in bulk 
optical elements has become ever more topical. In particular, 
Faraday isolators (FI) are strongly affected by thermal self-
action, since the absorption in magneto-optical media is 
relatively high. A number of papers have been devoted to 
investigations of self-induced thermal effects in magneto-
optical media [3-16]. The absorption of radiation in optical 
elements of FIs generates a temperature distribution that is 
nonuniform over a transverse cross section. This leads to three 
physical mechanisms affecting the laser radiation: thermal 
lensing; a nonuniform distribution of the angle of rotation of 
the polarization plane because of the temperature dependence 
of the Verdet constant; and the simultaneous appearance of 
circular birefringence (Faraday effect) and linear birefringence 
due to the photoelastic effect. The latter two mechanisms alter 
the polarization state of radiation transmitted through the FI, 
deteriorating the isolation ratio. This was studied in detail in 
Ref.  [6], where it was shown that the photoelastic effect 
makes the greatest contribution to the depolarization. In Ref.  
[5], novel designs of FIs were suggested and theoretically 
justified, in which the deterioration in the isolation ratio was 
considerably improved. Further experiments [8, 12] confirmed 
the high efficiency of the novel designs. The influence of laser 
beam shape on all these parameters was considered in 
reference  [10]. The dependence of the depolarization ratio in 
differing FI designs on orientation of magneto-optic crystal 
was thoroughly investigated in  [14]. Another method for 
compensating depolarization in the FI was suggested and 
studied in Ref.  [15], based on the use of crystalline quartz cut 
along its optical axis and placed inside a telescope. Taking all 
of these prior investigations as a whole, the most efficient and 
convenient design is that 
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of a reciprocal quartz rotator 
(Fig.1b). 
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Fig. 1. Overview of power loss mechanisms in the spatial polarization mode 
after passage of a laser beam through (a) a traditional Faraday isolator (FI)  
and (b) a birefringence-compensated FI for use at high average powers. 
Optical components are indicated numerically: 1,2 – polarizers, 3 − half wave 
plate, 4 − 45 degree Faraday rotator, 5 – 22.5 degree Faraday rotator, 6 – 67.5 
degree reciprocal rotator 
 

The isolation ratio is generally the primary but not the only 
parameter of interest in measuring the performance of an FI. 
In addition, beam distortions are also induced in these devices 
through thermal lensing and other mechanisms. In some 
applications, these characteristics may be as important as the 
isolation. An example is an FI in a laser interferometer for 
gravitational wave detection [17] or a Faraday mirror inside a 
laser oscillator [13, 16, 18] or regenerative amplifier [18]. 

In the following sections, we consider the performance of 
two different FI designs – the traditional single element design 
(Fig. 1a) and the birefringence-compensated design (Fig. 1b) 
[5]. The latter type employs, instead of a single 45o Faraday 
rotator, two 22.5o Faraday rotators and a reciprocal 
polarization rotator placed between them, which rotates the 
polarization at 67.5o. Let us assume that an incident beam Ein 
has horizontal polarization, Gaussian intensity profile with 
waist r0 and flat wavefront, i.e., the complex amplitude of the 
field is given in the form: 

Ein=x0E0 exp(-r2/2r0
2)exp[i(kz-ωt)]    (1) 

where x0 is a unit vector directed along the x axis, r is the 
polar radius, k is the wave number, and ω is the frequency of 
the laser field.  We wish to compare the total power losses in 
the spatial polarization mode (1) during the first pass (from 
left to right) of the beam through each isolator design. In both 
designs, in the absence of thermal effects after the first pass, 
the beam retains its horizontal polarization and passes through 
a polarizer 2 (while during the return pass the polarization is 
altered to vertical and the beam is reflected by a polarizer 1). 
Because of polarization distortions in the magneto-optical 
medium, part of the radiation will be reflected by the polarizer 
2 after the first pass. The corresponding power loss γp 
(henceforth called polarization loss) is determined as a ratio 
of radiation power reflected from polarizer 2 to radiation 
power incident on polarizer 2: 

∫ ∫

∫ ∫
∞

∞

⋅
= π

π

ϕ

ϕ
γ 2

0 0

2
2

2

0 0

2
02

rdrd

rdrd

p

E

yE
       (2) 

where y0 is a unit vector directed along the y axis, ϕ is the 
azimuthal angle, and E2 is the complex amplitude of the field 
before the polarizer 2. Here (and later), we assume that the 
clear aperture of FI is such that the aperture losses can be 
ignored and the integration over r can be extended to infinity. 
The component of the field transmitted through the polarizer, 
E2,x is linearly polarized (polarizer 2 is assumed to be ideal), 
but its transverse structure now differs from the incident 
Gaussian beam Ein because of the spatially-dependent 
amplitude and phase distortions introduced during 
propagation through the non-uniformly heated magneto-optic 
medium and the polarizer. We define a second quantity, γs, as 
the difference from unity of projection of the laser field E2,x 
on the ideal Gaussian field (1):  
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Physically, this quantity represents the ‘effective’ power 
loss from the Gaussian (TEM00) beam caused by the 
introduction of higher order spatial modes transmitted through 
the polarizer. In the absence of thermal effects, γs = 0.  
Therefore, the total power loss in the TEM00 spatial 
polarization mode γt during forward propagation through the 
FI is: 

( )( spt )γγγ −−=− 111       (4) 

It has been shown [10, 11] that two different effects 
contribute to γs: an isotropic thermal lens and anisotropic 
distortions caused by the photoelastic effect. For small 
distortions (γs<<1), γs is a sum of two corresponding 
components: anisotropic amplitude-phase losses γa and 
isotropic phase losses γi   [10, 11]. Therefore, the total power 
loss in the spatial polarization mode γt during propagation is 
(for γp<<1): 

iapt γγγγ ++=        (5) 

The first two components are related to depolarization 
caused by the photoelastic effect, whereas the latter 
component represents pure optical path (phase) distortions 
induced by isotropic thermal lens. These losses are indicated 
schematically on Fig. 1.  Note that a contribution to the 
isotropic thermal lens is made by both the temperature 
dependence of refractive index and the “isotropic” part of the 
photoelastic effect (see below). It has been shown previously 
[10, 11] that γi is the same for all FI designs. 

The temperature distribution in the optical element and, 
consequently, the distribution of phase of an aberrated laser 
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beam are close to parabolic. Therefore, the majority of the 
phase distortions can be compensated by means of an ordinary 
lens or a telescope (shown as a dashed line in Fig. 1), which 
introduces additional curvature in the wavefront. Throughout 
the text, we shall henceforth call this method of compensation 
“telescopic compensation”, indicating corresponding losses by 
subscript “TC”. Obviously, the isotropic thermal lens is not 
totally compensated, since the ordinary lens can compensate 
only for parabolic phase, but the thermal lens has a more 
complex profile. For small distortions, it has been shown that 
the isotropic losses introduced by the thermal lens can be 
reduced approximately by a factor of 15, provided the position 
and focus of the compensating lens is chosen optimally [10, 
11]:  

15/iNCiTC γγ ≈  
Here and further the subscript “NC” indicates that there is 

no compensation present and the subscript i refers to the 
isotropic component of depolarization.

Alternatively, an adaptive method for compensating the 
thermal lens was suggested and experimentally studied [19, 
20]. Essentially, it consists of a compensating glass (CG) 
placed before (or after) polarizer 1 (e.g., Schott glass FK51; 
indicated as the dashed line in Fig. 1). The parameters of the 
CG are chosen such that the thermal lens has the same 
amplitude and shape as in FI but, at the same time, is negative 
(in many magneto-optic materials it is positive). If we do not 
take into account propagation of the beam between CG and 
FI, the isotropic losses are totally compensated: 

γiAC=0 
Here and later the subscript “AC” denotes the adaptive 

compensation. It has been shown that the influence of 
propagation can be insignificant for reasonable adaptive 
compensation geometries [19]. 

The adaptive method has two advantages over the 
telescopic compensation: there is no need in adjustment when 
laser power is changed, and the accuracy of isotropic 
compensation is higher. However, a disadvantage of the 
adaptive method is that the photoelastic effect in the CG leads 
to additional distortions and, consequently, to losses in the 
spatial polarization mode. By analogy with losses introduced 
into FI, these losses can be subdivided into polarization losses 
γpCG , (power reflected by polarizer 1), and anisotropic 
amplitude-phase losses γaCG (see Fig. 1) .  

As we show in this paper, the above two compensation 
methods can compensate only for γi . The telescopic method is 
less efficient but does not lead to additional losses γp and γa . 
The adaptive method totally compensates for γi   (if we ignore 
propagation), but increases losses γp and γa because of the 
photoelastic effect in the CG. This effect was not considered 
by Mueller et. al. [19].  In section 2 of this paper, we present a 
detailed comparison of the two compensation methods – 
telescopic and adaptive – considering all thermal effects both 
in the magneto-optic crystal and in compensating glass. Based 
on these results, we determine physical constants and define a 
figure-of-merit for the compensating glass that predicts the 

efficiency of the adaptive method. In section 3, we report on 
the results of measurement of key thermo-optical constants for 
TGG crystal and FK51 glass. We also describe experimental 
results of compensation of the thermal lens in FI with a quartz 
rotator (Fig. 1b) using FK51 glass. In section 4, our results 
will be discussed and our conclusions are summarized in 
section 5. 
 

II. THE EFFICIENCY OF MODE DISTORTION COMPENSATION. 
The calculation of total losses without compensation γtNC 

and with telescopic compensation γtTC have been previously 
[10, 11] derived analytically. Here we shall calculate, by 
analogy with those papers, the total loss in case of adaptive 
compensation γtАС and shall compare the results with γtNC and 
γtTC . We assume that the Rayleigh range of the beam is much 
greater than the length of FI, even taking into account induced 
distortions, i.e., diffractive propagation effects can be totally 
neglected. It is seen from expressions (2-4) that for 
determining the total loss γtAC, it is enough to find the field 
before a second polarizer E2. This value can be found by 
applying the formalism of the Jones polarization matrices:  

E2=F(δc=π/2,δl,L)L2(3π/8)PxG(δCG)Ein         (6a) 
E2=F(δc=π/4,δl/2,L/2)R(−3π/8)⏐ 

           ⏐F(δc=π/4,δl/2,L/2)⏐L2(π/16)PxG(δCG)Ein
Here and later letters “a” and “b” correspond to formulas 

for FI in Fig. 1a and b.  F, L2, R, Px, and G denote the Jones 
matrices for the Faraday rotator, λ/2 waveplate, quartz rotator, 
polarizer, and compensating glass respectively, δl is the phase 
difference between linear eigenpolarizations along the entire 
length of the magneto-optical medium L; and δс is the phase 
difference between circular eigenpolarizations. The matrices 
for the rotator, λ/2 plate and polarizer are well known:  
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where βR,L are the rotation angles.  Bearing in mind the 
linear birefringence, a Faraday rotator that rotates the 
polarization plane by an angle δс/2 can be described by the 
following Jones matrix  [21, 22] 
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222
cl δδδ +=                         (9) 

Ψ is the angle of inclination of the linear eigenpolarization 

(6b)

(7)

(8) 
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relative to the x-axis (see Fig. 2), n is the refractive index 
averaged for two eigenpolarizations. We shall consider here 
only cylindrical optical elements and only two most common 
orientations – [001] (with an angle θ between the 
crystallographic axis and the x axis) and [111]. Note that for 
the traditional FI design (Fig. 1a), the best orientation is [001], 
whereas [111] is the optimal crystal orientation for the 
birefringence compensated design (Fig. 1b) [14]. 

 
Fig. 1. Crystal cross-section showing the crystallographic axes and 
eigenpolarizations for the calculations described in the text. 

 
The value of n(r) is determined by the temperature 

distribution T(r). The expression for n(r) can be found, e.g., in 
[23]:  

                    n(r) = n(0)+[T(r)–T(0)]P                  (10) 
where P for the crystal orientations under consideration is: 
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and n0 , ν, (1/L)(dL/dT), pi,j are the non-excited (“cold”) 
refractive index, Poisson’s ratio, thermal expansion 
coefficient, and photoelastic coefficients of  the magneto-optic 
medium, respectively.  

The exponential phase factor in expression (8) does not 
affect the polarization distortions and represents an isotropic 
thermal lens. The temperature dependence of the refractive 
index and the “isotropic” part of the photoelastic effect 
contribute to this lens (see two corresponding components in 
expression (11) for P[001]). In papers [24, 25], it was shown 
that the contribution of the thermal expansion along z-
direction of the medium to the thermal lens is negligibly 
small, as compared to the temperature dependence of the 
refractive index. Therefore, we assume that length L is 
independent of temperature.  

The values of δl and Ψ are determined by the photoelastic 
effect and depend on the temperature gradient dT(r)/dr [23, 
26]: 
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where λ  is a wavelength. As seen, the expressions for δl 
and Ψ for the [001] orientation transform into expressions for 
δl and Ψ for the [111] orientation, when ξ is substituted by 
unity and Q – by Q(1+2ξ)/3. Therefore, we shall henceforth 
only give expressions only for the [001] orientation, bearing 
in mind that corresponding formulas for the [111] orientation 
can be obtained by these substitutions.  We also drop the 
[111], [001] subscripts from P,Q when referring to TGG.  

The temperature distribution T(r) can be easily found from 
the thermal conductivity equation for infinitely long cylinder  
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where α and κ are the absorption coefficient and the 
thermal conductivity of the magneto-optical medium, and P0 
is the laser radiation power.  

Thus, expressions (9-16) fully determine the matrix of the 
Faraday rotator (8). From a physical point of view, the 
compensating glass is equivalent to a Faraday element without 
a magnetic field present. Consequently, its matrix G is simply 
matrix F at δc=0. All constants of the magneto-optical 
medium (L, n0 , ν, pi,j , α , κ, P, Q) must be replaced with 
appropriate constants of compensating glass (LCG, n0CG , νCG, 
pi,jCG , αCG , κCG, PCG, QCG). Note that ξCG for any glass is 
equal to unity. Therefore, substitution of matrices F and G, 
and expression (7) into expression (6), and then substitution of 
the result into expressions (2-4), yield: 
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where we have defined the following quantities and 
constants: 
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Analytic expressions (17,18) are obtained for the case of 
weak distortions, i.e., they are valid at γ<<1.  In our 
calculations, we assumed that the angle θ has its optimum 
value [10, 11] 

θopt=−π/8             (22a) 

     θopt=5π/16                 (22b) 
It is clear from expression (18) that for compensation of the 

isotropic part of losses γi the following condition must be 
obeyed  

piCG = −pi          (23) 
from which, taking into account (21), we obtain  
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Thus, the key parameter of the compensating glass is the 
ratio PCG/QCG , and the higher this ratio, the better the glass. 
Specifically, if this ratio is much more than that for the 
magneto-optical crystal, then losses associated with anisotropy 
thermally induced in the glass can be ignored.   

 For comparison, we give expressions from Refs. [10, 11] 
for the total loss without compensation 
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In the case of telescopic compensation, the first two 
components remain unchanged, whereas the third one is 
reduced approximately by a factor of 15 [10, 11]: 
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(Note that in equ. (27) for telescopic compensation (‘TC’), 
we assume that the absorption in compensating lens is 
essentially zero, leading to negligible contributions for γtAC 
and γpAC.) The comparison of (17) and (27) yields a condition, 
at which γtAC<γtTC , i.e., compensation with glass is more 
efficient than with a lens or a telescope:  (21) 
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Here we took into account that Q<0, QCG<0, PCG<0 , P>0 
(see below). The ratio P/Q has not been measured for the 
TGG crystal, which is most commonly used in FI; nor has it 
been found for the FK51 glass. Note that for laser Nd glasses, 
this ratio varies within a wide range: from 0.5 to 500 [27]. 
Therefore, the measurement of parameters P and Q for TGG 
and FK51 becomes important, and additional experiments are 
required to confirm the efficiency of the adaptive method for 
compensating the thermal lens. 

 

III. MEASUREMENT OF THERMOOPTICAL CONSTANTS OF TGG 
CRYSTAL AND FK51 GLASS. 

From expressions (17, 23-25, 27), energy losses in the 
spatial polarization mode γt (both with and without 
compensation of the thermal lens) are totally determined by 
parameters p , pi , ξ,  QCG/PCG , and the lower these 
parameters, the lower γt. Therefore, we must determine the 
following constants: κ, α, Q, P and ξ for a magneto-optic 
medium (here we consider TGG only) and QCG, PCG for 
compensating glass (FK51). The thermal conductivity of TGG 
is κ=7.4 W/Кm. The absorption coefficient of TGG α can 
vary significantly (up to a factor of four) from sample to 
sample [14, 19, 28], and the value of ξ for TGG has been 
recently measured in Refs. [14, 28]: ξ=2.25±0.2. More 
difficult is to measure the thermooptical constants Q and P (as 
well as QCG, PCG), because of the difficulty in measuring their 
constituent constants, in particular, photoelastic coefficients 

(26a)

(26b)
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pij. In subsection 3.1, we shall describe measurements of Q, 
carried out using a technique reported in Ref. [6]. In 
subsection 3.2, a scanning Hartmann sensor will be described, 
which we utilized for measuring P. The results of the 
measurements will be summarized in subsection 3.3. 

 

A.  Measurement of thermooptical constant Q. 
All known direct measurements of Q to date have been 

made by means of an interferometric setup [29, 30]. The root-
mean-square error of these measurements is typically 5−15% 
[23]. Here, we employ a simple measurement technique [6] 
which provides the same accuracy. It consists of measuring 
the depolarization of high-power laser radiation propagating 
in an absorbing medium in the absence of a magnetic field 
 γH=0 as a function of laser radiation power: 

( )2(cos)1(1
8

2212
0 θξγ −+==

ApH )    (30) 

If all values, except Q in the right-hand side of equ. (30), 
are known, then by measuring γH=0, one can determine the 
constant Q, using it as a fitting parameter. We performed such 
measurements for FK51 Schott glass and for a [001] TGG 
crystal produced at the Research Institute of Materials Science 
and Technology, Zelenograd, Russia (RIMST). The 
measurement results are shown in Fig. 3. At small р, the 
depolarization γН=0 does not depend on power, since it is 
determined by “cold” birefringence. At higher powers, the 
coincidence between experimental values and formulas (30) is 
fairly good. 

 
Fig. 3. Measurement of zero-field depolarization γН=0 as a function of p 

(see equ. 21 for definition of p) for a 48mm long TGG crystal (manufactured 
by RIMST ) at θ=0 (squares) and θ=π/4 (circles) as well as for FK51 glass 
67mm length (crosses). Theoretical curves are plotted according (30) at 
αTGGQTGG=1.2⋅10-8K-1cm-1, αFK51QFK51=0.15⋅10-8K-1cm-1. 

 
The transmission and residual reflection of anti-reflective 

coating were measured for this particular TGG crystal (length 
48 mm, diameter 9 mm). Based on these data, we calculated 
the absorption. The transmission was measured at a 
wavelength of 1053 nm both for one and two passes of the 
radiation through the crystal. In the both cases, the value of 
the absorption was the same, αTGG=(4.8±0.4) x 10-3 сm-1. 
Knowing αTGG from Fig. 3 we obtain the following value 

QTGG = −(2.6±0.4) x 10-6 K-1      (31) 
The sign of Q for TGG and FK51 (see below) was 

determined by the technique reported in [31]. The absorption 
of FK51 glass in catalogue is αFK51=2.4⋅10-3сm-1. Using 
αFK51=2.4⋅10-3сm-1 from Fig. 3 we obtain 

QFK51 = −0.63 x10-6 K-1        (32) 
The measured value of QFK51 (32) is close to that in 

catalogue QFK51= – (0.53-0.59)⋅10-6К-1 for a wavelength of 
589 nm. For some glasses, it is known that Q very weakly 
depends on a wavelength [9]. However, keeping in mind that 
the accuracy of αFK51=2.4⋅10-3сm-1 may be not very high, it is 
important to note that the value of the product αFK51Q FK51 is 
measured with high accuracy: 

αFK51Q FK51 = −(0.15±0.02) x 10-8 K-1cm-1    (33) 
 

B.  Use of a scanning Hartmann sensor for thermal lens 
measurements. 
The detailed description of the operation of the scanning 
Hartmann sensor can be found elsewhere [28]. Here, we 
briefly describe its operation in measurements of thermal 
lensing.  An optical schematic of the experiment is illustrated 
in Fig. 4. 

 
Fig. 3. Experimental schematic diagram for the scanning Hartmann sensor 
described in the text. Optical components are indicated numerically: 1 – pump 
laser, 2 – sample, 3 – mirror, 4 – power meter, 5 – probe laser, 6 – collimating 
lens, 7 – rotating mirror, 8 – polarizer, 9, 10 – lens, 11 – CCD-camera. 
 

The laser beam from a 40 W 1053 nm, CW Nd:YLF single-
transverse mode laser (indicated as ‘1’ in the figure)  is used 
to heat the optic under test (2).  Dichroic mirrors (3) are used 
to couple the beam into and out of the sample, with the laser 
power monitored using a power meter (4). An 850 nm, CW 
single-mode diode ‘probe’ laser (5) with fiber output for mode 
cleaning is collimated by a lens (6), with the output 
polarization set by a polarizer (8). This scheme provides a 
constant spatial structure of the probe beam. A rotating 
mirror 7, placed on the axis of a computer-controlled 
galvanometric scanner, changes the angular pointing of the 
beam. The solid line in Fig. 3 indicates the beam path in the 
midposition of the mirror (7), and the dotted lines – in two end 
positions. The rotational axis of the mirror (7) is located at the 
focal plane of a lens (9) with focal length 295 mm such that 
angular scanning of the mirror (7) resulted in a parallel 
movement of the beam along diameter of the sample. In the 
presence of a thermal lens, the probe beam transmitted 
through the sample deviates from its initial direction by a 
small but measurable angle. This angle leads to a 
corresponding shift of the beam in the focal plane of a second 
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f = 600mm lens (10), which focuses the probe beam onto a 
CCD camera (11) located a distance f from the lens. The 
signal from the CCD camera is sent to a computer, which 
determines and compares the coordinates of the beam’s 
centroid position before and after heating the sample. By 
scanning the galvanometer, we are able to measure the 
differential optical path difference as a function of the heating 
power with a resolution of λ/500.  

In contrast to the traditional Hartmann sensor [20, 32], in 
which the entire aperture of the sample is measured 
simultaneously at many points, in this method one has to scan 
the beam over the sample aperture point by point. Although 
this procedure is time-consuming, it avoids problems 
associated with overlapping of different beams which are 
frequently encountered in the traditional Hartmann sensor.    

 

C.   Measurement of thermooptical constant P. 
To eliminate depolarization of radiation from a probe laser 

in the sample, we used only r- (the field along the polar 
radius) and  ϕ- (the field along the polar angle) polarizations. 
Measurements were made in the absence of a magnetic field 
for four cases: TGG with the [111] orientation; TGG with the 
[001] orientation at θ=0; TGG with the [001] orientation at 
θ=π/4; and FK51 glass. By analogy with section 2, it can be 
easily shown that in the first three cases the phase Δ(u) for r- 
and ϕ-polarizations of the probe beam after a pass through a 
sample with the length Ls is described by the following 
expressions: 
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Here u=x2/r0
2 is the scaled transverse coordinate. We use x 

to denote the radial distance from the center of the crystal to 
reflect that our experiments scan the distortion in one 
dimension, see Fig. 3.  For the glass, we can use any of the 
three expressions at ξ=1. Note that the distribution of the 
isotropic term (the first component) of the thermal lens is the 
same as the temperature distribution (16), whereas the 
anisotropic (the second component) part has a different shape.  

With the measurements of α and Q, all values except P in 
equation (34) are known. P was used as a fitting parameter. 
Measurements for FK51 Schott glass, two TGG crystals with 
the [001] orientation (from Electro-optic technologies (EOT) 
and RIMST) and one TGG crystal with [111] orientation 
(from Litton) were carried out. The dependences Δ(r) for glass 
and the RIMST crystal are presented in Fig. 5. The figure 
clearly shows good coincidence between theoretical (34) and 
experimental curves, demonstrating that the measurement 
accuracy of P was high and the sign of Q was properly 
determined. 

 
Fig. 5. Probe laser optical path difference  after propagating through (a) a 
48mm long TGG crystal at θ=π/4 and (b) FK51 glass 67mm length when 
heated by 38W pump laser. Circles − ϕ-polarization, crosses − r-polarization. 
Theoretical curves are plotted according to equ. (34) at αTGGPTGG=1.5⋅10-8    K-

1cm-1,  αFK51PFK51= −0.41⋅10-8 K-1cm-1

 

 
Fig. 6. The ratio P[001]/Q for FK51 glass (diamonds) and TGG crystals grown 
by EOT (circles), Litton (triangles), and RIMST (squares). Filled symbols 
correspond to ϕ-polarization, open symbols − r-polarization. 

 
The measurements demonstrated the absence (within the 

experimental error) of the dependence of P on power of the 
heating laser, and the absence of the dependence of P[001]/Q on 
a particular TGG sample (see Fig. 6). Knowing the absorption 
of the RIMST crystal αTGG=(4.8±0.4)10-3 сm-1 , from Fig. 5a 
we obtain the value of P[001]

P[001] = (26±4)10-6 K-1        (35) 
Using αFK51=2.4⋅10-3сm-1, from Fig. 5b for the FK51 glass 

we obtain  
PFK51 = −1.7⋅10-6 K-1        (36) 

Again, although the accuracy of the value αFK51=2.4⋅10-3  

сm-1 may be not high (see above), it is important to note that 

(34) 
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the value of the product αFK51PFK51 is measured with high 
accuracy: 

αFK51P FK51 = −(0.41±0.06)10-8 K-1сm-1     (37) 
which, considering (33), yields the critical parameter P/Q 

(see section 2): 
P FK51/Q FK51 = 2.8±0.4       (38) 

The accuracy of the measurement does not depend on the 
uncertainty concerning the value of αFK51. It is seen from Fig.5 
that the astigmatism of the thermal lens is considerably higher 
for FK51 than for TGG, which is a result of lower ratio P/Q. 

It is worth noting that the measurements of P are made at a 
wavelength of 815 nm. To verify that P weakly depends on 
wavelength, we performed measurements at a wavelength of 
the probe laser of 1060 nm. Since the wavelength of the probe 
and heating lasers are very close, we used a more 
sophisticated experimental technique described in Ref. [28]. A 
sample was heated not by a Gaussian but rather a П-shaped 
(flat-top) beam with a diameter equal to the crystal diameter. 
Corresponding points are shown in Fig. 6. It is evident that the 
value of P[001] for TGG is the same, within the experimental 
error, for these wavelengths. 

 

D.  Experimental determination of thermal lens 
compensation in FI using FK51 glass 

Our scanning Hartmann sensor was also used to 
experimentally verify the adaptive compensation method [19] 
on a birefringence-compensated FI [5, 8, 12]. First, a 
measurement was taken of the radial distribution of the phase 
for a two-crystal FI (TGG in the [111] orientation) with quartz 
rotator but without polarizers.  Then, based on the data 
obtained and constants of FK51 glass, we calculated the 
length of compensating glass that would be optimal for this 
FI, in this case 45 mm. The glass was placed between the FI 
and a lens 10 (Fig. 3). Between the lens and the CCD camera, 
a calcite wedge was used to separately observe vertical and 
horizontal polarization of the probe laser. 

 
Fig. 7. Probe laser optical path difference after propagating through  a 
birefringence-compensated FI without thermal compensation (diamonds) and 
with thermal compensation by means of FK51 glass:  ϕ-polarization (circles), 
r-polarization (crosses), average between two polarizations (squares). The 
heating laser power is 38 W. 
 

The results of the measurements are presented in Fig. 7, 
which shows that the thermal lens averaged for two 

polarizations (shown as squares) is almost totally compensated 
at a heating power of 38 W: at r< 2 ( i.e., in the area of 1/er0 2 
by beam intensity) the difference of phase from constant is 
less than 0.02 radian. At the same time, the astigmatism of the 
resulting lens evident in the ϕ-polarization (circles) and r-
polarization (crosses) is very large, owing to the small ratio P 

FK51/Q FK51.  
 

IV. DISCUSSION  
The investigations that we have performed demonstrate that 

when calculating power losses of radiation in the spatial 
polarization mode, the photoelastic effect must be taken into 
account both in the magneto-optical medium and in the 
compensation glass. It is important to consider the isotropic 
change of the refractive index, characterized by the second 
component in expression (11) for P[001] , as well as 
anisotropic effects (characterized by parameter Q), which lead 
to depolarization and amplitude-phase distortions.    

First, we compare the relative contributions of the 
temperature dependence of refractive index and the 
photoelastic effect to the thermal lens (two components in 
expression (11) for P[001]). The value of (dn/dT)TGG was 
measured in Ref. [28] and is 19⋅10-6К-1, which coincides with 
the value 20⋅10-6К-1 reported in Refs. [19, 20]. Comparing this 
value with (35) we can conclude that the contribution of the 
photoelastic effect into the thermal lens is one third that of 
dn/dT, and signs of these effects are additive. For FK51 the 
value (dn/dT)FK51= −7.3⋅10-6К-1 is given in the catalogue for  
λ=1064 nm and weakly depends on the wavelength. The 
comparison of this value with (36) allows us to conclude (see 
the first eq. in (11)) that the contribution of the photoelastic 
effect in the parameter P is roughly 0.75 of the contribution of 
temperature dependence of the refractive index, and the signs 
of these effects are different, resulting in  a value for PFK51 
four times less than (dn/dT)FK51.  

Note that in reference [20] there is a statement that the 
contribution of the photoelastic effect in the thermal lens for 
TGG is 17% of that of dn/dT, and their signs are different. 
This is in fact incorrect, and arises from an incorrect 
interpretation of the photoelastic effect – formula (6) in 
reference [20] is incorrect. Referring to reference [20], the 
authors of reference [19] (which happen to be some of the 
same authors of this work), state that in many cases the 
contribution of the photoelastic effect is negligibly small in 
comparison with dn/dT, which, as follows from the above 
discussion, is incorrect either for TGG or for FK51. 

A stronger thermal lens due to the photoelastic effect in 
TGG and a weaker thermal lens in FK51 can nevertheless 
have the same modulus and different signs provided the length 
of glass is chosen properly (considering the photoelastic 
effect) (see Fig. 6). However, the anisotropic part of the 
photoelastic effect in TGG leads to power losses in mode γр 
and γа that cannot be compensated. Moreover, the anisotropic 
part of the photoelastic effect induces additional losses. In this 
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regard, the figure-of-merit of glass is the ratio PCG/QCG, which 
should be maximized for best performance. For the FK51 
glass, this ratio is as small as 2.8, thereby considerably 
increasing γаAC and γрAC, (see formulas (18)). Figure 8 shows 
dependences of different losses plotted by formulas (17, 25, 
27) taking into account the conditions (23, 24). Dashed lines 
indicate the dependences obtained by numerically integrating 
(2, 3) without the approximation of weak distortions used 
when deducing formulas (17, 25, 27).  Although there is a 
small difference between the analytical and numerical results, 
it is evident that the analytical results fairly well describe γ in 
the limit γ<0.1. As one can see from the Fig. 8, the telescope 
method is better than adaptive method with FK51 glass. This 
comes about because the figure of merit PFK51/QFK5==2.8 is 
less than 3.2, the r.h.s of equ. (29b).  However, telescopic 
compensation is a point design for a particular power; values 
plotted for telescopic compensation in Figure 8 assume that an 
optimal compensating focus is achieved at each power, 
requiring repositioning of the compensating lens. There are 
two ways of eliminating the negative influence of the 
anisotropic part of the photoelastic effect in the adaptive 
compensation method: by compensating the depolarization in 
the compensating element or by reducing its influence to a 
negligible level. The depolarization can be compensated using 
two elements made of FK51 glass and a 90о rotator of 
polarization placed between them, as it is performed in active 
elements of solid-state lasers [33]. If the total length of these 
two elements provides for condition (23), then the isotropic 
distortions in the FI will be compensated. This can be called 
ideal compensation, since, although the anisotropic part 
remains the same as without the compensating glass, yet: 

γtPC=γpNC + γaNC        (39) 
This method, however, has a disadvantage of complexity 

and losses associated with residual reflections from surfaces 
of additional elements. 

 
Fig. 8. Theoretically predicted power losses γ versus laser power P0 for the 
birefringence-compensated FI shown in Fig. 1b for no thermal compensation 
(curve 1), with telescope compensation (curve 2), adaptive compensation by 
means of FK51 (curve 3), by means of glass with PCG/QCG=12 (curve 4), by 
means of uniaxial crystal or gel (curve 5). The dashed lines show results of 
numerical integration and solid lines show analytical results given by formula 
(17, 25, 27, 39). For these calculations, we assumed a total length L=24mm of 
two TGG crystals, and TGG absorption αTGG=2.5⋅10-3cm-1. 

 
The effect of thermally induced anisotropy of the 
compensating glass can be considerably reduced by choosing 
a glass with a large ratio PCG/QCG. It is seen from equ. 17, 18, 
24-26, 31, and 35 that at PCG/QCG=12, losses γtAC during 
adaptive compensation are only twice as much as γtPC (see Fig. 
8), and at PCG/QCG>50, the negative influence of the 
compensating glass can be neglected in practice. Note, that 
compensating glass with QCG>0 would be more preferable 
because in this case the last term in formula (18) for γaAC is 
negative (p<0). The photoelastic effect can be totally 
eliminated by using gel as the compensating medium rather 
than glass, as it is done for compensation of the thermal lens 
in active laser media [34], or a crystal with natural 
birefringence, with which the induced birefringence can be 
neglected [23]. An example of such a crystal may be LICAF 
or YLF. The last one has [35] 
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To increase absorption, YLF can be doped by copper, 
ytterbium, or another element. 

Note that in contrast to glass, a gel or an anisotropic crystal 
can be placed between polarizers of FI, without deteriorating 
the isolation ratio. This reduces the distance from the gel (or 
crystal) to TGG, thereby decreasing diffraction losses [19]. 
Another important advantage of YLF is that its thermal 
conductivity (6 W/Km [35]) and the product of thermal 
capacity (790 J/kgK) [35] and density (3.96 g/сm3) [35] are 
close to thermal conductivity and corresponding product of 
TGG crystal (thermal conductivity  385 J/kgK, density 7.32 
g/сm3) [36]. Due to this, the thermal lens can be compensated 
not only in the stationary regime, but  also dynamically in the 
presence of rapidly changing beam power. When gel or 
anisotropic crystal is used, the total power loss γt is described 
by (39). The dependence of γtPC on radiation power is plotted 
in Fig. 8. Here it is evident how efficient the adaptive 
compensation can be.  

 

V. CONCLUSION 
We have performed a comprehensive investigation of 

thermally-induced self-action of laser beam propagation  in 
TGG-based FIs.  The absorption of laser power leads to losses 
in the initial spatial polarization mode of laser radiation. These 
losses γt consist of three components: losses induced by 
isotropic thermal lens γi; polarization losses γp; and losses 
associated with amplitude-phase distortions due to 
depolarization γa. The key parameters for determining γt are 
the thermo-optic constants P, which determines isotropic 
losses γi, and Q, which determines anisotropic losses γp+γa. 
We have measured these constants for TGG crystals and 
FK51 glass and find that for TGG, the contribution of the 
photoelastic effect to the isotropic component of the thermal 
lens is comparable in magnitude to the lens induced by dn/dT, 
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and, because their contributions are additive, the actual 
thermal lens is stronger than the lens obtained when the 
photoelastic effect is neglected. For FK51 glass, the influence 
of the photoelastic effect is even higher. Thus, the 
contribution of the photoelastic effect in an isotropic thermal 
lens should be taken into account when the lens is 
compensated with an ordinary lens or a telescope with optimal 
focus [10]  or using the adaptive method [19]. In the latter 
case, the figure-of-merit of the compensating glass is a ratio of 
thermooptical constants P and Q. For the FK51 glass, the 
efficiency of the adaptive method is less than for the ordinary 
lens with an optimal focus, because the value of P/Q for this 
glass is small.  However, the efficiency of the adaptive 
compensation can be considerably enhanced by eliminating 
the anisotropy with a 90о polarization rotator or using a 
compensating glass with PCG/QCG>50, such as a crystal with 
natural birefringence or a gel. 
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