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1 Introduction

This documents describes a modal simulation of dual-recycled interferometers. Equations are given to compute
the steady state fields (carrier, radio-frequency and audio sidebands) inside a general interferometer, as well as
the detector response to differential strain. All fields are described in terms of a development in Hermite-Gauss
modes in the basis of the arm Fabry-Perot cavities. In this framework all mirrors and optical elements are
described by matrix operators that couple different modes if the element are not well matched to the beam.
This analysis is similar to the one presented in [1] and [2].

At each point inside the interferometer the fields can be expressed as vectors of complex coefficient in a given
Gaussian basis. In this computation the unperturbed arm basis is always used: the two arms are taken as equal
and their mode computed. This mode is used as the basis one for all fields, even outside the long arm cavities.
In this approach the only approximation is to neglect the influence of the Schnupp asymmetry for the Gaussian
basis.

The steady state equations for the fields inside a dual recycled interferometer are written in vector notation
and analytically solved. Once the operator matrices for each optical element are known, the result can be
numerically computed.
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2 Matrix operators for optical elements

2.1 Mirror

If the mirror is perfectly matched to the incoming Gaussian beam its surface corresponds to the wave-front of
the field and the reflection as well as the transmission are unity operators, since no modification is done to the
beam.

If the mirror is instead not matched, its shape can be expressed as the deviation from the constant phase surface
of the Gaussian beam z(x, y) which is taken as a general function of the two transverse variables x and y.

If the incoming beam at the mirror is ψin(x, y), the reflected one acquires a phase shift dependent on transverse
variables x and y

ψref (x, y) = e2ikZ(x,y)ψin(x, y) (2.1)

begin k the incoming beam wave vector k = 2π/λ.

The mirror operator is a matrix in the Gauss-Hermite basis. The element give the coupling coefficient of a
TEMn,m mode into a reflected TEMp,q. This can be obtained numerically from the scalar product

Mpq,nm =
〈
Upq , e

2ikZ(x,y)ψin(x, y)Umn
〉

(2.2)

For reference the explicit expression of a n,m Gauss-Hermite mode is reported here [3]:

Umn =

√
2
π

√
1

2n+mm!n!w2(z)
Hm

( √
2

w(z)
x

)
Hn

( √
2

w(z)
y

)
exp

[
−(x2 + y2)

(
1

w2(z)
+

ik

2R(z)

)]
(2.3)

w(z) = w0

√
1 +

(
z

z0

)2

(2.4)

R(z) = z +
z2
0

z
(2.5)

z0 =
πw2

0

λ
(2.6)

In this expression the Gouy phase is not written in the fundamental modes, since it is considered inside the
propagators. Here Hm is the Hermite polynomial of order n.

Using the same Gauss-Hermite basis for the incoming and reflected beam, the matrix operator for a general
mirror is given by the following integral:

Mpq,mn =
2

πw2(z)

√
1

2m+n+p+qm!n!p!q!∫ +∞

−∞

∫ +∞

−∞
Hp

( √
2

w(z)
x

)
Hq

( √
2

w(z)
y

)
Hm

( √
2

w(z)
x

)
Hn

( √
2

w(z)
y

)

e2ikZ(x,y)e
− 2(x2+y2)

w2(z) dxdy (2.7)

Once the profile of the mirror surface is known, this matrix can be computed by simple numerical integration.
In the simple case of a spherical mismatched mirror, the surface deviation is given by

Z(z, y) =
x2 + y2

2

(
1
RC
− 1
R(z)

)
(2.8)

where RC is the mirror radius of curvature and R(z) is the beam phase front curvature at the mirror.
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In the actual model mirrors are considered as thin objects, without any substrate. Therefore there is no effect
of a mismatched mirror in transmission. This can be easily implemented in future if needed.

The reflection matrix from the other side of the mirror is simply given by the inverse of the computed operator.
Being the reflection matrices unitary, it is enough to take the hermitian transpose.

2.2 Tilted mirror

If the tilt angle is small, at first order the beam dephasing can be expressed as [4]:

Z(z, y) =
x2 + y2

2

(
1
RC
− 1
R(z)

)
+ θx (2.9)

where θ is the tilt angle measured in radians.

2.3 Lens

The effect of transmission through a thin lens with a given focal length f can be described again as the addition
of a dephasing, given this time by [3]:

ψtra(x, y) = ψin(x, y)eik
x2+y2

2f (2.10)

and the lens operator can be computed with the same equations as for mismatched mirrors. It is interesting to
see that the lens matrix depends only on the focal length and on the beam spot size at the lens.

2.4 Free space propagation

The propagation though free space is a diagonal operator which takes into account the Gouy phase accumulated
by the different Hermite-Gauss modes:

φg = arctan
(
z

z0

)
(2.11)

where z is the distance of the point considered with respect to the beam waist. The phase in propagation
through a given length is computed as the difference between the Gouy phase at the two extremes.

The propagation matrix is given by

Pmn = exp
(
ikL+ i

ω

c
L+ (m+ n)ψg

)
(2.12)

In this equation the carrier field is considered to have null frequency. The propagator for audio or radio-frequency
sidebands can be obtained by setting the ω variable. The Gouy phase of the fundamental TEM00 mode is not
considered, since it is in any case canceled by a proper setting of the resonance condition.

3 Static fields

3.1 Cavity resonant mode

The simulation Hermite-Gauss basis is fixed by the Fabry-Perot arm cavity: its length is L and the radii of
curvature of the two mirrors are L1 (input) and L2 (end). The relevant parameters of the resonant mode are
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Figure 1: Scheme of a single resonant Fabry-Perot cavity. R1 and R2 are the two radii of curvature. L1 and L2

the distance of the two mirrors from the cavity mode waist. The cavity length is L.
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Figure 2: Fields for the computations of Fabry-Perot cavity operators.

the position of the waist and the Rayleigh range. The distance of the waist from the input mirrors are given by

L1 =
L(R2 − L)

R1 +R2 − 2L
(3.1)

L2 =
L(R1 − L)

R1 +R2 − 2L
(3.2)

and the Rayleigh length is:

z2
0 =

(R1 − L)(R2 − L)(R1 +R2 − L)L
(R1 +R2 − 2L)2

(3.3)

3.2 Fabry-Perot cavity

A single Fabry-Perot cavity is composed by an input mirror and an end mirror, with scalar amplitude reflection
coefficients iri and ire and scalar amplitude transmission coefficients ti and te. Here the convention of [4] is
used for mirror reflection and transmission. If we consider the more general case of mismatched mirrors, the
reflection and transmission coefficients are matrix, as described in sec. 2.1. These matrices are supposed to
contain also the scalar coefficients for the mirror.

The field inside the cavity obeys the following steady state equation (see fig. 2):

ψ1 = Tiψ0 −RiPLRePLψ1 (3.4)

where Ri and Re are the reflection operators for input and end mirrors, PL is the propagator for the cavity
length L, taking into account also the Gouy phase as explained in sec. 2.4. One must take care that all these
equations contains matrix operand, therefore ordering matters. The intra-cavity field can be obtained solving
eq. 3.4:

ψ1 = (1 +RiPLRePL)−1
Tiψ0 (3.5)



Modal Interferometer Simulation

VIR-0142A-10
issue : 1
date : February 22, 2010
page : 5 of 15

0 5 6

8 7

1

2

4

3

9

10

LW

LN

FW

FN

Figure 3: Fields for the computations of Michelson interferometer operators.

To build more complex interferometers we need an analytical expression for the reflected field and for the field
impinging on the end mirror:

F = i
[
R+
i + TiPLRePL(1 +RiPLRePL)−1

Ti

]
(reflection operator) (3.6)

I = PL(1 +RiPLRePL)−1
Ti (intra-cavity field operator) (3.7)

3.2.1 Resonance condition

It is useful to specify the propagator expression in order to express the caivyt length tuning as an offset from
resonance of the fundamental TEM00 mode. In the approximation of well matched mirrors and considering
only the fundamental mode, the intra-cavity field is given by

ψ1 =
ti

1 + riree2ikL
ψ0

At resonance the exponential must be equal to −1 and therefore the propagator for a Fabry-Perot cavity around
resonance can be written as

(PL)mn,pq = ieikδL+i(m+n)φgδmpδnq (3.8)
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3.3 Michelson interferometer

Referring to fig. 3, with an input from the symmetric port, the fields inside a general Michelson interferometer
must satisfy the steady state equations:

ψ4 = PWFWPW
i√
2
ψ0

ψ8 = PNFNPN
1√
2
ψ0

ψ9 =
1√
2
ψ4 +

i√
2
ψ8

ψ10 =
i√
2
ψ4 +

1√
2
ψ8

where FN and FW are the generic reflection operators of the two arms. Here the beam-splitter is assumed to
be perfect. These equations can be solved for the symmetric and anti-symmetric port fields:

ψ9 =
i

2
(PNFNPN + PWFWPW )ψ0 (3.9)

ψ10 =
1
2

(PNFNPN − PWFWPW )ψ0 (3.10)

At this point it is very useful to define the common and differential Michelson propagators

P+ = PN/2PW/2 (3.11)
P− = PN/2P−W/2 (3.12)

Since propagators are diagonal and thus commutant, the following identities hold:

PN = P+P− (3.13)
PW = P+P

−1
− (3.14)

Equations 3.9 and 3.10 can be rewritten in terms of the Michelson transmission operators from symmetric port
to symmetric and anti-symmetric ports:

MSA =
i

2
P+

(
P−FNP− + P−1

− FWP
−1
−
)
P+ (3.15)

MSS =
1
2
P+

(
P−FNP− − P−1

− FWP
−1
−
)
P+ (3.16)

3.3.1 Resonance conditions

As for the Fabry-Perot, it is useful to enforce in the propagators the dark fringe condition in the case of
Fabry-Perot arms. If the arms are at resonance, their reflection coefficients can be well approximated with
FN ∼ FW ∼ −i. The dark fringe field is therefore

ψ9 ∼
1
2
e2ikl+

(
e2ikl− + e−2ikl−

)
e2ikl+

This field should be zero and this enforce the condition e2ikl− = i from which the final expression for the
Michelson differential propagator around dark fringe can be found:

(P−)pq,mn =
√
ieikδl−δmpδnq (3.17)

Note that here the Gouy phase in propagation through the macroscopic Michelson differential length (Schnupp
asymmetry) is neglected.



Modal Interferometer Simulation

VIR-0142A-10
issue : 1
date : February 22, 2010
page : 7 of 15

MICH

10

0 1 2

9 8

3

4

7

6

5

LS

LP

Figure 4: Scheme of fields inside a dual recycled interferometer.

3.3.2 Input from anti-symmetric port

To implement signal recycling, one also needs the Michelson equation for an input from the anti-symmetric
port. From a simple symmetry argument it appears that they can be obtained from the above equation, just
swapping north and west. In conclusion one can find that:

MAS = MSA (3.18)
MAA = −MSS (3.19)

3.4 Dual-recycled interferometer

Static field equations for a dual recycled interferometer can be obtained considering the Michelson part as a
box with the already computed transmittance operators. Referring to fig. 4 the fields ψ1 and ψ4 inside the two
recycling cavities are used as basic fields:

ψ1 = TPψ0 + iRPPPMSSPPψ1 −RPPPMASPSRSψ4

ψ4 = PSMSAPPψ1 + iPSMAAPSRSψ4

One can solve for ψ4 from the second equation obtaining:

ψ4 = (1− iPSMAAPSRS)−1
PSMSAPPψ1

and substitute in the first one to get a final expression for the power recycling cavity field:

ψ1 =
[
1− iRPPPMSSPP +RPPPMASPSRS(1− iPSMAAPSRS)−1

PSMSAPP

]−1

TPψ0 (3.20)
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3.4.1 Power recycling resonance condition

To set the correct operating point around the power recycling resonance one assumes there is no signal recycling
RS = 0 and approximate to the case of only fundamental TEM00 mode and no mismatching:

ψ1 =
tp

1− irp(PPP+)2
(3.21)

The power recycling cavity propagator can be defined as

PRC = P+PP (3.22)

and considering displacement from the carrier fundamental mode resonance it is equal to

(PRC)pq,mn =
√
−1eikδlRC+i(m+n)φg,RC δmpδnq (3.23)

where φg,RC is the Gouy phase in propagation inside the recycling cavity.

It is useful to rewrite eq. 3.20 in terms of this new power recycling propagator and the equivalent signal recycling
propagator:

PSC = PSP+ (3.24)

For this purpose, a redefinition of the Michelson operators, factorizing out the P+ is useful:

PPMSSPP = PRCM
′
SSPRC

PPMASPS = PRCM
′
ASPSC

PSMSAPP = PSCM
′
SAPRC

PSMAAPS = PSCM
′
AAPSC

where

M ′SS =
1
2
(
P−FNP− − P−1

− FWP
−1
−
)

M ′AS =
i

2
(
P−FNP− + P−1

− FWP
−1
−
)

and similar for M ′AA and M ′SA. With these new definitions, the field inside power recycling cavity is given by:

ψ1 =
[
1− iRPPRCM ′SSPRC +RPPRCM

′
ASPSCRS(1− iPSCM ′AAPSCRS)−1

PSCM
′
SAPRC

]−1

TPψ0 (3.25)

The field inside the signal recycling cavity is:

ψ4 = (1− iPSCM ′AAPSCRS)−1
PSCM

′
SAPRCψ1 (3.26)

3.4.2 Input fields for arms

To compute the fields inside the two Fabry-Perot arm cavities, we first need the Michelson input fields ψ2 and
ψ7:

ψ2 = PPψ1

ψ4 = iPSRSψ4

and using equations from the Michelson interferometer (see sec. 3.3) we can compute the fields in input of the
two Fabry-Perot arms:

ψN =
1√
2
PNψ2 +

i√
2
PNψ7

ψW =
i√
2
PWψ2 +

1√
2
PWψ7
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Figure 5: Fields for the computations of Fabry-Perot cavity response to end mirror motion.

These can be rewritten in terms of the power recycling cavity fields ψ1:

ψN =
1√
2

[
P−PRC − P−PSCRS(1− iPSCM ′AAPSCRS)−1

PSCM
′
SAPRC

]
ψ1 (3.27)

ψW =
i√
2

[
P−1
− PRC − P−1

− PSCRS(1− iPSCM ′AAPSCRS)−1
PSCM

′
SAPRC

]
ψ1 (3.28)

Then the intra-cavity fields can be computed using eq. 3.7.

3.4.3 Signal recycling resonance condition

To get the correct resonance condition inside the signal recycling one must start again from the well-matched
fundamental mode approximation. The field inside SRC is given by eq. 3.26 and its resonance depends on
the M ′AA operator. With arms on resonance and close to dark fringe it is well approximated by M ′AA ∼ −1.
Defining ψpump = PSCM

′
SAPRCψ1, eq. 3.26 is approximated by

ψ4 ∼
ψpump

1 + ie2iklSCrs

Here we assume zero tuning of signal recycling when the carrier field is anti-resonant and therefore

(PSC)pq,mn =
√
−ieiϕSRC+i(m+n)φg,SC δpmδnq (3.29)

where the signal recycling tuning ϕSRC has been introduced.

4 Interferometer response to differential strain

4.1 Fabry-Perot cavity response

To compute the dark port signal response to a differential motion of the end mirror one must start from the
expression of the Fabry-Perot cavity response to an end mirror motion at a given frequency. The effect can be
described as an additional input to the cavity fields at the end mirror reflection port which contains a dephasing
modulated at the frequency of the motion (see fig. 5). Using the same notations introduced in sec. 3.2:

ψR = iree
2ikx(t)ψ2 ∼ ireψ2 + ire · 2ikx(t)ψ2 (4.1)

The additional field (at a frequency ω) is then given by

ψ+(ω) = −2kx0Reψ2 (4.2)

where x0 is the end mirror motion amplitude at the ω frequency. This additional signal must then be propagated
to the reflection port of the cavity:

ψ3(ω) = (1 +RePL(ω)RiPL(ω))−1
ψ+(ω) (4.3)
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Figure 6: Signal sideband propagations inside Michelson interferometer.

where the propagator must take into account the signal frequency

PL(ω) = PLe
iω

c L (4.4)

In conclusion the field in reflection of the cavity at the signal frequency is given by

ψ5(ω) = −2kx0TiPL(ω)(1 +RePL(ω)RiPL(ω))−1
Reψ2 (4.5)

The second ingredient needed to build more complex systems is the cavity reflection operator at the signal
frequency. This is the same as eq. 3.6 but computed at the signal frequency

F (ω) = i
[
R+
i + TiPL(ω)RePL(ω)(1 +RiPL(ω)RePL(ω))−1

Ti

]
(4.6)

4.2 Michelson interferometer

In the case of differential motion inside the arms, two fields are added inside the Michelson interferometer at
the two arm reflection ports. They propagate both to the symmetric and anti-symmetric port (see fig. 6):

ψA(ω) =
1√
2
P+(ω)

(
iP−(ω)ψN (ω) + P−1

− (ω)ψW (ω)
)

(4.7)

ψS(ω) =
1√
2
P+(ω)

(
P−(ω)ψN (ω) + iP−1

− (ω)ψW (ω)
)

(4.8)

Also the Michelson transmission coefficients are needed. They can be obtained from eq. 3.15, 3.16, 3.18, 3.19
just replacing the propagators with ones computed at the frequency ω.

4.3 Dual-recycled interferometer response

Referring to fig. 7, signal sidebands coming from the arms can be seen as additional inputs at the level of the
power and signal recycling cavities. We divide these inputs in the symmetric part (going inside PRC) and the
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Figure 7: Signal sideband propagations inside a dual recycled interferometer.

anti-symmetric part (going inside SRC). The two fields ψ3 and ψ5 are considered as the basis one for the steady
state equation. We need only ψ5 since we need to compute only the dark fringe response to differential motion.

ψ3 = ψS + iMSS(ω)PP (ω)RPPP (ω)ψ3 + iMAS(ω)PS(ω)RSPS(ω)ψ5

ψ5 = ψA + iMSA(ω)PP (ω)RPPP (ω)ψ3 + iMAA(ω)PS(ω)RSPS(ω)ψ5

The first equation can be solved to get ψ3

ψ3 = (1− iMSS(ω)PP (ω)RPPP (ω))−1
ψS + i(1− iMSS(ω)PP (ω)RPPP (ω))−1

MAS(ω)PS(ω)RSPS(ω)ψ5

This is then substituted inside the second equation above to solve for ψ5:

ψ5 =
[
1− iMAA(ω)PS(ω)RSPS(ω) + iMSA(ω)PP (ω)RPPP (ω)

(1− iMSS(ω)PP (ω)RPPP (ω))−1
MAS(ω)PS(ω)RSPS(ω)

]−1

[
ψA + iMSA(ω)PP (ω)RPPP (ω)(1− iMSS(ω)PP (ω)RPPP (ω))−1

ψS

]
(4.9)

This equation must be rewritten to contain only physical propagators P−, PRC and PSC . The first step is to
introduce again the modified Michelson operators defined in sec. 3.4.1. The partial propagators can be written
as PP = PRCP

−1
+ and PS = PSCP

−1
+ . Using these equations, the commutation property of all propagator and

the inverse of product identity (AB)−1 = B−1A−1 one can reshuffle the previous equation only in term of the
physical propagators:

ψDF (ω) = TSPSC(ω)
[
1− iM ′AA(ω)PSC(ω)RSPSC(ω) + iM ′SA(ω)PRC(ω)RPPRC(ω)

(1− iM ′SS(ω)PRC(ω)RPPRC(ω))−1
M ′AS(ω)PSC(ω)RPPSC(ω)

]−1

[
ψA(ω) + iM ′SA(ω)PRC(ω)RPPRC(ω)(1− iM ′SS(ω)PRC(ω)RPPRC(ω))−1

ψS(ω)
]

(4.10)
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where the symmetric and anti-symmetric fields are

ψA(ω) =
1√
2

(
iP−ψN (ω) + P−1

− ψW (ω)
)

ψS(ω) =
1√
2

(
P−ψN (ω) + iP−1

− ψW (ω)
)

5 Input mirror thermal lensing

Thermal lensing in the input mirror substrate can be easily modeled with the small addiction of a lens operator
Λ at the input and output of the Fabry-Perot cavity operator. Therefore eq. 3.6 becomes

F = iΛ
[
R+
i + TiPLRePL(1 +RiPLRePL)−1

Ti

]
Λ (5.1)

The fields inside the two Fabry-Perot cavities (see sec. 3.4.2) become explicitly

ψinsN =
1√
2
PLN (1 +RiNPLNReNPLN )−1

TiNΛN[
P−PRC − P−PSCRS(1− iPSCM ′AAPSCRS)−1

PSCM
′
SAPRC

]
ψRC (5.2)

ψinsW =
1√
2
PLW (1 +RiWPLWReWPLW )−1

TiWΛW[
P−1
− PRC − P−1

− PSCRS(1− iPSCM ′AAPSCRS)−1
PSCM

′
SAPRC

]
ψRC (5.3)

Finally, the signal fields at the two cavity outputs are given by

ψN (ω) = −2kxN (ω)ΛNTiNPLN (ω)(1 +ReNPLN (ω)RiNPLN (ω))−1
ReNψ

ins
N (5.4)

ψW (ω) = −2kxW (ω)ΛWTiWPLW (ω)(1 +ReWPLW (ω)RiWPLW (ω))−1
ReWψ

ins
W (5.5)
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Figure 8: Relevant fields inside a dual-recycled Fabry-Perot interferometer.

6 Summary of all relevant equations

Fig. 8 shows the relevant fields computed in this analysis. This section summarizes all the equations computed
in this note. Static fields are given by

ψRC =
[
1− iRPPRCM ′SSPRC +RPPRCM

′
ASPSCRS(1− iPSCM ′AAPSCRS)−1

PSCM
′
SAPRC

]−1

TPψ0

ψSC = (1− iPSCM ′AAPSCRS)−1
PSCM

′
SAPRCψRC

ψDF = TSψSC

M ′SS = −M ′AA =
1
2
(
P−FNP− − P−1

− FWP
−1
−
)

M ′AS = M ′SA =
i

2
(
P−FNP− + P−1

− FWP
−1
−
)

FX = iΛX
[
R+
iX + TiXPLXReXPLX(1 +RiXPLXReXPLX)−1

TiX

]
ΛX

ψinsN =
1√
2
PLN (1 +RiNPLNReNPLN )−1

TiNΛN[
P−PRC − P−PSCRS(1− iPSCM ′AAPSCRS)−1

PSCM
′
SAPRC

]
ψRC

ψinsW =
1√
2
PLW (1 +RiWPLWReWPLW )−1

TiWΛW[
P−1
− PRC − P−1

− PSCRS(1− iPSCM ′AAPSCRS)−1
PSCM

′
SAPRC

]
ψRC
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Around the standard working point the propagators are

(PLX)pq,mn = ieikδLX+i(n+m)φg,X δpmδqn

(P−)pq,mn =
√
ieikδl−δpmδqn

(PRC)pq,mn =
√
−ieikδlRC+i(n+m)φg,RC δpmδqn

(PSC)pq,mn =
√
−ieiϕSC+i(n+m)φg,RC δpmδqn

Dark fringe response to end mirror motions is given by

ψDF (ω) = TSPSC(ω)
[
1− iM ′AA(ω)PSC(ω)RSPSC(ω) + iM ′SA(ω)PRC(ω)RPPRC(ω) ·

(1− iM ′SS(ω)PRC(ω)RPPRC(ω))−1
M ′AS(ω)PSC(ω)RPPSC(ω)

]−1

·[
ψA(ω) + iM ′SA(ω)PRC(ω)RPPRC(ω)(1− iM ′SS(ω)PRC(ω)RPPRC(ω))−1

ψS(ω)
]

ψA(ω) =
1√
2

[
iP−(ω)ψN (ω) + P−(ω)−1ψW (ω)

]
ψS(ω) =

1√
2

[
P−(ω)ψN (ω) + iP−(ω)−1ψW (ω)

]
ψN (ω) = −2kxN (ω)ΛNTiNPLN (ω)(1 +ReNPLN (ω)RiNPLN (ω))−1

ReNψ
ins
N

ψW (ω) = −2kxW (ω)ΛWTiWPLW (ω)(1 +ReWPLW (ω)RiWPLW (ω))−1
ReWψ

ins
W

All operators with ω argument can be obtained with the standard equations, just multiplying all propagators
by the additional signal dephasing eiωL/c.
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7 List of symbols

LN , LW arm cavity macroscopic lengths
lN , lW short Michelson arm macroscopic length
lP , lS power and signal recycling mirror distances from beam splitter
lRC , lSC total power and signal recycling cavity lengths
PLN , PLW arm propagators (matrices)
PRC , PSC power and signal recycling cavity propagators (matrices)
P− short Michelson propagator (matrix)
RP , TP reflection (as seen from inside ITF) and transmission operators for PR mirror
RS , TS reflection (as seen from inside ITF) and transmission operators for SR mirror
RiN , TiN reflection (as seen from inside arm) and transmission operators for north input mirror
ReN , TeN reflection (as seen from inside arm) and transmission operators for north end mirror
RiW , TiW reflection (as seen from inside arm) and transmission operators for west input mirror
ReW , TeW reflection (as seen from inside arm) and transmission operators for west end mirror
ΛN , ΛW input mirror lens operators for north and west arms
FN , FW Fabry-Perot cavities reflection operators
MAS , MSA, MSS , MAA Michelson interferometer operators between symmetric and anti-symmetric ports
ω signal frequency
xN , xW microscopic displacements of end mirrors
δlN , δlW microscopic static tuning of Fabry-Perot arm cavities (combinations of DARM and CARM)
δlRC microscopic static tuning of power recycling cavity (PRCL)
φg,X Gouy phase for TEM00 in the X cavity
ϕSR microscopic tuning of signal recycling cavity
ψ0 interferometer input field
ψRC static field inside power recycling cavity (at PR reflection inside PRC)
ψSC static field inside signal recycling cavity (at BS reflection)
ψDF static field at dark port
ψN , ψW static fields at arm cavity input
ψinsN , ψinsW static fields inside arm cavities
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