

Current Transducer HX 05...10-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

at 10pC

$I_{PN} = 5...10 A$

Primary nor r.m.s. curre		Primary cu measuring I _P (A)		Primary Conductor Diameter x Turns (mm)	Type	
Series	Parallel	Series	Parallel			
± 5 ± 10	± 10 ± 20	± 15 ± 30	± 30 ± 60	0.8d x (6T+6T) 1.0d x (3T+3T)	HX 05-N HX 10-N	
V _{OUT} R _{OUT} R L V C I C V d	Output Load Supply Currer	t impedance resistance voltage (± t nt consumpt voltage for Prima	5 %)¹¹)	•	± 4 < 50 ≥ 10 ± 15 < ± 20 n > 3 > 1	V Ω kΩ V mA
V _e	R.m.s.			harge extinction	- 1	ĸv

Accuracy-Dynamic performance data				
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (without offset)		< ± 1	% of I _{PN}
e	Linearity (0 ± I _{PN})		< ± 1	% of I
V OE	Electrical offset voltage, $T_{\Delta} = 25^{\circ}C$		$< \pm 40$	mV
V _{OH}	Hysteresis offset voltage $\hat{\mathbf{Q}} \mathbf{I}_p = 0$;			
OII	after an excursion of 3 x I _{PN}		< ± 15	mV
\mathbf{V}_{OT}	Thermal drift of V _{OF}	max.	± 1.5	mV/K
V _{OT} TC e _G	Thermal drift of the gain (% of reading)		± 0.1	%/K
t,	Response time @ 90% of I _P		≤ 3	μs
f	Frequency bandwidth (-3 dB) 2)		50	kHz

Impulse withstand voltage, 1.2/50µs

General data			
T _△	Ambient operating temperature	- 25 + 85	°C
T _s	Ambient storage temperature	- 25 + 85	o °C
m	Mass	8	g
	Min. internal creepage distance/clearance	≥ 5.5	mm
	Isolation material group	I	
	Standards	EN50178	

Notes :1) Also operate at ±12V power supplies, measuring range reduced to ±2.5x I_{PN} 2) Small signal only to avoid excessive heating of the magnetic core

Features

- Galvanic isolation between primary and secondary circuit
- Hall effect measuring principle
- 2 isolated primary windings
- Isolation voltage 3000V
- Low power consumption
- Extended measuring range(3x I_{PN})
- Power supply from ±12V to ±15V
- Material according to UL94-V0

Advantages

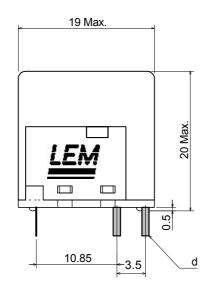
kV

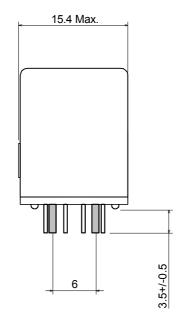
kV

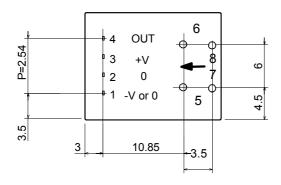
≥ 1

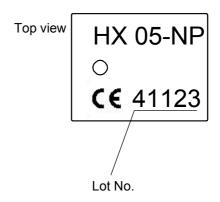
≥ 6

- Low insection losses
- Easy to mount with automatic handling system
- Small size and space saving
- High immunity to external interference.


Applications


- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Electrical appliances
- Battery supplied applications
- DC motor drives


011122/4



HX 05...10-NP (in mm)

Terminal Pin Identification

1..... -15V

2..... 0V

3..... +15V

4..... Output

5..... Primary 1 input Current(-)

7..... Primary 1 input Current(+)

6..... Primary 2 input Current(-)

8..... Primary 2 input Current(+)

Primary conductor diameter

НХ	05-NP	10-NP	
d	0.8	1.0	

Secondary pins dimension 0.5 x 0.25

Specifications subject to change without notice.